首先LIS有个$O(n^2)$的DP方法

  $f(i,j)$表示前i个数,最后一个数<=j的LIS

  如果$a_i!=0$则有

  如果$a_i=0$则有

  注意因为$f(i-1,j)\leq f(i-1,j-1)+1$,所以上面第二个转移是成立的。

  用treap维护这个有两种写法。

  ①支持区间max=,区间+1。

  ②只要是只要求单点查询或者最后输出答案的区间操作都是可以用差分的。

  这题显然两个条件都满足233

  每次对一个区间+1的时候,实际上就是区间后移一位,直接插入一个点即可,然后l所在位置+1,(r+1)所在位置-1,但是这题我们维护的是前缀max,所以每个点的信息其实是前面任意一个地方的差分值里最大的,所以我们不能-1,而是如果区间右端点右边还有+1的话,就删掉最近的一个。

  $a_i=0$时,区间为$[l,r]$,$a_i!=0$,区间看成是$a_i$这个点。

  好像写丑了跑得很慢

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define lt tree[x].ls
#define rt tree[x].rs
using namespace std;
const int maxn=;
struct poi{int ls, rs, sum, rnd, size, w;}tree[maxn];
int n, l, r, tott, root, tmp, mx, now, cnt;
int a[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void build(int &x, int delta)
{
tree[x=++tott].w=tree[x].sum=delta;
tree[x].rnd=rand()<<|rand();
tree[x].size=;
}
inline void up(int x)
{
tree[x].size=tree[lt].size+tree[rt].size+;
tree[x].sum=tree[lt].sum+tree[rt].sum+tree[x].w;
}
void split(int x, int &l, int &r, int k)
{
if(!k) l=, r=x;
else if(tree[x].size==k) l=x, r=;
else if(tree[lt].size>=k) r=x, split(lt, l, lt, k), up(x);
else l=x, split(rt, rt, r, k-tree[lt].size-), up(x);
}
void merge(int &x, int l, int r)
{
if(!l || !r) x=l+r;
else if(tree[l].rnd>tree[r].rnd) x=l, merge(rt, rt, r), up(x);
else x=r, merge(lt, l, lt), up(x);
}
void find(int x)
{
if(tree[lt].sum) return find(lt);
now+=tree[lt].size+;
if(tree[x].w) return;
if(tree[rt].sum) return find(rt);
}
void del(int &root, int rk)
{
int x, y, z;
split(root, x, y, rk); split(x, z, x, rk-);
merge(root, z, y);
}
inline void solve(int l, int r)
{
int x, y, z;
build(tmp, ); split(root, x, y, l-);
merge(x, x, tmp); merge(root, x, y);
split(root, x, y, r);
if(tree[y].sum) {now=; find(y); del(y, now);}
merge(root, x, y);
split(root, x, y, mx); merge(root, x, y);
}
int main()
{
read(n); read(l); read(r); tree[].rnd=(1ll<<)-; mx=r;
for(int i=;i<=n;i++) read(a[i]), mx=max(mx, a[i]);
for(int i=;i<=mx;i++) build(tmp, ), merge(root, root, tmp);
for(int i=;i<=n;i++)
if(a[i]) solve(a[i], a[i]); else solve(l, r);
int x, y; split(root, x, y, mx);
printf("%d\n", tree[x].sum);
}

CH暑假欢乐赛 SRM 07 天才麻将少女KPM(DP+treap)的更多相关文章

  1. 汕头市队赛 SRM 07 D 天才麻将少女kpm

    这道题放了很久还是回来补了 D 天才麻将少女KPM SRM 07 背景&&描述 天才麻将少女KPM立志要在日麻界闯出一番名堂.     KPM上周叒打了n场麻将,但她这次又没控分,而且 ...

  2. 【SRM-07 D】天才麻将少女KPM

    Description 天才麻将少女KPM立志要在日麻界闯出一番名堂.KPM上周叒打了n场麻将,但她这次又没控分,而且因为是全市参与的麻将大赛,所以她的名次范围是0..10^5.名次可能等于0是因为K ...

  3. ContestHunter暑假欢乐赛 SRM 01 - 儿童节常数赛 爆陵记

    最后15min过了两题...MDZZ 果然是不适合OI赛制啊...半场写完三题还自信满满的,还好有CZL报哪题错了嘿嘿嘿(这算不算犯规了(逃 悲惨的故事*1....如果没有CZL的话T1 10分 悲惨 ...

  4. ContestHunter暑假欢乐赛 SRM 15

    菜菜给题解,良心出题人!但我还是照常写SRM一句话题解吧... T1经典题正解好像是贪心...我比较蠢写了个DP,不过还跑的挺快的 f[i]=min( f[j-a[j]-1] )+1  { j+a[j ...

  5. ContestHunter暑假欢乐赛 SRM 04

    逃了一场SRM(躺 A题可以看成0点到1点,有p的几率从0到1,1-p几率不动,求0到1的期望步数.很显然概率是不降序列数/n!,然后列个方程E[0] = E[0] * (1 - p) + 1,解得E ...

  6. ContestHunter暑假欢乐赛 SRM 02

    惨不忍睹 3个小时都干了些什么... 日常按顺序从A题开始(难度居然又不是递增的 第一眼A题就觉得很简单...写到一半才发现woc那是个环.感觉一下子复杂了,按照链的方法扩展的话要特判很多东西... ...

  7. ContestHunter暑假欢乐赛 SRM 09(TJM大傻逼选手再创佳绩)

    T1 f[i]为前i页最少被撕几页,用二分转移就行了,答案为ans=min(f[i]+(n-i)); 不知道为什么写挂了嗯 二分的l初始应该是0 T2 数位DP f[i][1/0][1/0][1/0] ...

  8. ContestHunter暑假欢乐赛 SRM 08

    rating再次跳水www A题贴HR题解!HR智商流选手太强啦!CYC也好强%%%发现了len>10大概率是Y B题 dp+bit优化,据LLQ大爷说splay也可以优化,都好强啊.. C题跑 ...

  9. ContestHunter暑假欢乐赛 SRM 06

    T1二分check...为什么这么显然的我没看出来TAT,还在想倒着加入并查集check什么的,题写太多思维定势啦QAQ T2是NOIP题的弱化版...当时没看出来,写了个DP.可以看出这一位比上一位 ...

随机推荐

  1. 私有云搭建:树莓派+kodexplorer可道云,几步搞定!

    目前蒲公英异地组网则是推出了树莓派1.0软件客户端.无需公网IP!简单60秒设置!轻松远程访问树莓派!实现远程登录.远程配置.远程访问服务.传输数据等等操作.例如:蒲公英树莓派1.0软件客户端+可道云 ...

  2. ossec代理

    代理端 OSSEC有两种代理端:可安装的代理端和哑代理端(免安装).可安装的代理端被安装在主机上,通过OSSEC的加密协议将主机的信息发送到OSSEC服务器.亚代理端则不需在远端主机进行安装.他作为O ...

  3. NIO基本概念

    1.  IO和NIO的区别 IO     面向流(stream oriented)  阻塞(blocking io) 无                  NIO  面向缓冲区(buffer orie ...

  4. 7行Python代码的人脸识别

    随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支.百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的A ...

  5. 浅谈!DOCTYPE声明的作用?严格模式与混杂模式的区别?

    !DOCTYPE的作用: DOCTYPE是Document Type(文档类型)的缩写,<!DOCTYPE>声明必须是html文档的第一行,位于<html>标签之前.<! ...

  6. 《Spring1之第十次站立会议》

    <第十次站立会议> 昨天:试着把用C#写的代码转换为java语言. 今天:已基本转换为java语言了,也能够实现视频聊天这个功能了. 遇到的问题:在进行视频通话时没有考虑到声音优化功能,实 ...

  7. Android笔记-3-EditText的属性介绍

    [Android 基础]EditText的属性介绍 EditText继承TextView,所以EditText具有TextView的属性特点,下面主要介绍一些EditText的特有的输入法的属性特点 ...

  8. Alpha版本冲刺(二)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示组内 ...

  9. svm小问题

    1.没有报错但是结果是pedicttestlabel = [] accuracy = [] 举例:(前提是装了工具箱libsvm-3.21) data=[178,80;172,75;160,50;15 ...

  10. [转帖]22个必须学习的Linux安全命令

    22个必须学习的Linux安全命令 http://os.51cto.com/art/201808/581401.htm Linux系统的安全性涉及很多方面,从设置帐户到确保用户合法,限制比完成工作所需 ...