http://jiakaizhang.com/project/real-time-3d-reconstruction/

Real-time 3D Reconstruction using Kinect

Real-time 3D Reconstruction

Jiakai Zhang, Prof. Davi Geiger
New York University
July 2012 – September 2012

In order to reconstruct an indoor scene using a moving Kinect camera, I first needed toalign point clouds of different frames, then integrate them and rebuild the surface, and finally realize the real-time reconstruction using CUDA language.

More details are in my report.

Here is the pipeline:

Figure 1 pipeline

1. Input raw data – depth image

The figure 2 shows the raw data from Kinect which is RGB Image and Depth Image.

Figure 2 Raw Data from Kinect

The Kinect Camera has 30 FPS. The resolution for the depth image is 640 by 480.

2. Noise reduction – bilateral filtering

The raw depth data from the Kinect is pretty noisy. It’s hard to use for camera tracking. If I apply the Phong-shading to represent the normal map, the noisy normal vectors make the objects irregularity.

Figure 3 Raw Normal Map

Thus we implement a bilateral filtering which is used to smooth the depth image and remove noise while still preserving edges. The details of this algorithm shows on this Web Page. The figure 4 shows the result by choosing different parameters of filtering

 

Figure 4 bilateral filtering process results

3. Camera Pose Estimation – ICP

The input of ICP is the consecutive cloud points and normal vectors in different frames. The output is the 6DOF transformation matrix T which indicates the pose of camera. The figure 5 shows the results before and after applying ICP. The two images are obtained from two different viewports but the same scene.

Figure 5 ICP Result

6. Update reconstruction – TSDF and Ray Casting

Once I know the position and rotation relations between frames, I can use TSDF to merge all frame depth map into one. Here I use truncated signed distance function (TSDF) to save merged data. TSDF actually a 3d tensor or I call it a cube, which represents the space I are measuring. The value of each volume in the cube is the distance to closest surface. And this distance is signed and truncated. If the volume is behind the surface in the view of camera, then I set distance a negative value. If the distance between volume and surface is too long, then I set the distance equal to 1 or -1. I use truncation to efficiently get parallel surfaces.

After updating the TSDF cube, I choose the particular camera position to cast ray to the volume of the TSDF cube. If we find the sign of the TSDF value changes, it means we find a point on the surface. And we calculate the normal vector by calculating the gradient of TSDF at this point. The figure 6 shows the result of ray casting.

Figure 6 Ray Casting

7. Reference

[1] KinectFusion: Real-Time Dense Surface Mapping and Tracking. Microsoft Research
[2] B. Curless and M. Levoy. A volumetric method for building complex models from range images.
[3] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with CUDA. In H. Nguyen, editor, GPU Gems 3, chapter 39, pages 851–876.
[4] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the ICCV, 1998.
[5] C. Rasch and T. Satzger. Remarks on the O(N) implementation of the fast marching method.
[6] Y. Chen and G. Medioni. Object modeling by registration of multiple range images. Image and Vision Computing (IVC), 10(3):145–155,1992
[7] Kok-Lim Low Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration

Real-time 3D Reconstruction using Kinect的更多相关文章

  1. Camera Calibration and 3D Reconstruction

    3D RECONSTRUCTION WITH OPENCV AND POINT CLOUD LIBRARY http://stackoverflow.com/questions/19205557/op ...

  2. Multi-View 3D Reconstruction with Geometry and Shading——Part-2

    From PhDTheses Multi-View 3D Reconstruction with Geometry and Shading 我们的主要目标是只利用图像中的信息而没有额外的限制或假设来得 ...

  3. Multi-View 3D Reconstruction with Geometry and Shading——Part-1

    From PhDTheses Multi-View 3D Reconstruction with Geometry and Shading 计算机视觉的主要任务就是利用图像信息能智能理解周围的世界. ...

  4. [SLAM] 02. Some basic algorithms of 3D reconstruction

    链接:http://www.zhihu.com/question/29885222/answer/100043031 三维重建 3D reconstruction的一个算法思路介绍,帮助理解 首先一切 ...

  5. [SLAM] 02 Some algorithms of 3D reconstruction

    链接:http://www.zhihu.com/question/29885222/answer/100043031 首先一切建立在相机模型 x = kPX 上   x,X分别代表图片和空间中的二维三 ...

  6. 能否通过六面照片构建3D模型?比如人脸,全身的多角度照片,生成3D模型。?

    https://www.zhihu.com/question/36412840 9023 ​添加评论 ​分享 ​邀请回答​举报 ​ 收起 已关注写回答   9 个回答 默认排序​ 叛逆者 计算机图形学 ...

  7. 用基于WebGL的BabylonJS来共享你的3D扫描模型

    转自:http://www.geekfan.net/6578/ 用基于WebGL的BabylonJS来共享你的3D扫描模型 杰克祥子 2014 年 2 月 26 日 0 条评论 标签:3D扫描 , B ...

  8. 3D重建算法原理

    3D重建算法原理 三维重建(3D Reconstruction)技术一直是计算机图形学和计算机视觉领域的一个热点课题.早期的三维重建技术通常以二维图像作为输入,重建出场景中的三维模型.但是,受限于输入 ...

  9. 2020国防科大综述:3D点云深度学习——综述(3D点云分割部分)

    目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀 ...

随机推荐

  1. [ 原创 ] Java基础9--final throw throws finally的区别

    final修饰的类不可被继承,final修饰的方法可以被继承但不能被重写(覆盖) final用于可以声明属性和方法,分别表示属性的不可变及方法的不可覆盖.不是方法的不可继承 throw是用来明确地抛出 ...

  2. POJ 2987 Firing 网络流 最大权闭合图

    http://poj.org/problem?id=2987 https://blog.csdn.net/u014686462/article/details/48533253 给一个闭合图,要求输出 ...

  3. 7.4 (java学习笔记)网络编程之TCP

    一.TCP 1.1 TCP(Transmission Control Protocol 传输控制协议),是一种面向连接的,安全的传输协议,但效率相比于UDP而言比较低. TCP传输时需要确保先建立连接 ...

  4. 拆分Cocos2dx 渲染项目 总结

    因为只拆分了渲染的内容,所以代码只针对渲染部分进行分析. 代码涉及到这些类: CCImage,对图片的数据进行操作 CCNode,CCSprite,结点类 CCProgram,CCRenderer,C ...

  5. hdoj 4445 Crazy Tank 物理题/枚举角度1

    Crazy TankTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  6. C#高级编程9-第9章 字符串和正则表达式

    字符串和正则表达式 String类 String类对象是不可改变的,对于String对象的重新赋值在本质上是重新创建了一个String对象并将新值赋予该对象,其方法ToString对性能的提高并非很显 ...

  7. AES advanced encryption standard 2

    /* * FIPS-197 compliant AES implementation * * Copyright (C) 2006-2007 Christophe Devine * * Redistr ...

  8. BeeProg2C Extremely fast universal USB interfaced programmer

    http://www.elnec.com/products/universal-programmers/beeprog2c/ FPGA based totally reconfigurable 48  ...

  9. if....else的基本用法

    if....else...是基本流程控制语句 1.基本格式: if(条件){ }else if(条件){ }else if(条件){ } ........ else{ } 解释:其中else if.e ...

  10. linux 查找文件命令

    find -name 文件名    在当前目录下查找 find -name nginx.conf