P2043 质因子分解
P2043 质因子分解
题目描述
对N!进行质因子分解。
输入输出格式
输入格式:
输入数据仅有一行包含一个正整数N,N<=10000。
输出格式:
输出数据包含若干行,每行两个正整数p,a,中间用一个空格隔开。表示N!包含a个质因子p,要求按p的值从小到大输出。
因为\(N\)的范围比较小,我们考虑将范围内的质数打表打出来。因为一个数有唯一质数分解,分解为有限个质数的乘积,所以我们对每一个\(N\!\)的因子进行质数分解,将所有因数答案累计即可
附:线性筛
int prime[maxn], tot;
bool vis[maxn];
void get_prime(int n){
for(int i = 2;i <= n;i++){
if(!vis[i])prime[++tot] = i;
for(int j = 1;j <= tot && prime[j] * i < n;j++){
vis[prime[j] * i] = 1;
if(i % prime[j] == 0)break;
}
}
}
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int RD(){
int flag = 1, out = 0;char c = getchar();
while(c < '0' || c > '9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 10019;
int a;
int prime[maxn], tot;
bool vis[maxn];
void get_prime(int n){
for(int i = 2;i <= n;i++){
if(!vis[i])prime[++tot] = i;
for(int j = 1;j <= tot && prime[j] * i < n;j++){
vis[prime[j] * i] = 1;
if(i % prime[j] == 0)break;
}
}
}
int ans[maxn];
int main(){
a = RD();
get_prime(a);
for(int i = 1;i <= a;i++){
int now = i;
for(int j = 1;j <= tot && prime[j] <= i;j++){
while(now % prime[j] == 0)ans[j]++, now /= prime[j];
}
}
for(int i = 1;i <= tot;i++){
if(ans[i])printf("%d %d\n", prime[i], ans[i]);
}
return 0;
}
P2043 质因子分解的更多相关文章
- P2043 质因子分解(阶乘的质因数分解)
P2043 质因子分解 对$n!$进行质因数分解的一种高效算法 首先,筛出$<=n$的素数 蓝后,对$n$反复除以$prime$,同时$cnt+=n/prime$ $n!$中含有该$prime$ ...
- luogu P2043 质因子分解
题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中间用一个空格隔开.表示N ...
- 洛谷 P2043质因子分解 题解
题目传送门 N的范围很小,所以使用O(n2)的算法就能过啦! #include<bits/stdc++.h> using namespace std; ],n; int main(){ c ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
- A 洛谷 P3601 签到题 [欧拉函数 质因子分解]
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- POJ1845:Sumdiv(求因子和+逆元+质因子分解)好题
题目链接:http://poj.org/problem?id=1845 定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元. 为什么要有乘法逆元呢? 当我们要求(a/b) mod p的 ...
- Lightoj-1356 Prime Independence(质因子分解)(Hopcroft-Karp优化的最大匹配)
题意: 找出一个集合中的最大独立集,任意两数字之间不能是素数倍数的关系. 思路: 最大独立集,必然是二分图. 最大数字50w,考虑对每个数质因子分解,然后枚举所有除去一个质因子后的数是否存在,存在则建 ...
- LightOJ1138 —— 阶乘末尾0、质因子分解
题目链接:https://vjudge.net/problem/LightOJ-1138 1138 - Trailing Zeroes (III) PDF (English) Statistic ...
- LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数
题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function PDF (English) Statistics Forum ...
随机推荐
- web02-welcomeyou
新建web项目web02-welcomeyou, 修改index.jsp为 <body> This is my JSP page. <br> <form action=& ...
- Javascript面向对象二
Javascript面向对象二 可以通过指定原型属性来对所有的对象指定属性, Object.prototype.name="zhangsan"; Object.prototype. ...
- 我是IT小小鸟读后感
<我是一只IT小小鸟>一只是我想读list中一个本,但是上次去当当买的时候,竟然缺货了...昨天监考,实在无聊,就上网看电子书了,一天就看完了,看得有点仓促,所以理解估计不深. 1.刘帅: ...
- salt-api使用
salt-api 基本使用 目前salt API 支持的web模块如下: CherryPy Tornado WSGI 1.安装salt-api salt 使用 CherryPy来实现restful的a ...
- Enterprise Library 4.1 参考源码索引
http://www.projky.com/entlib/4.1/Microsoft/Practices/EnterpriseLibrary/AppSettings/Configuration/Des ...
- Alpha阶段博客链接
博客链接 团队项目启程篇章:http://www.cnblogs.com/liuliudashun/p/5968194.html 团队项目开发篇章1:http://www.cnblogs.com/li ...
- 安装centos6及安装redhat6后的配置
一.安装centos6 在引导到镜像后,选择: 我选择第二个,使用基本的显卡驱动安装系统 #第一个也是可以选的(安装或升级现有的系统) 之后,与 RHEL5 同样,使用光盘引导安装,系统会提示我们是否 ...
- appium启动sdk的android模拟器
(1)启动sdk安装目录下的AVD Manager.exe (2)如下图,点击[create]按钮 (3)如下图,设置虚拟机的配置,至于Target中的:Android 4.4.2是在安装sdk的时候 ...
- 2012r2 以及 2012r2 withupdate 已经安装更新的差异
0. 2012r2 不管带不带 update 1 他的版本号 都是 6.3.9600 如图示 2012r2的发布时间是 2013年 2012r2withupdate的发布时间是 2014年. 查看补丁 ...
- Inside Qt Series (全集,共十六篇,不同版本的Qt有不同的实现)
Inside Qt 系列 QObject这个 class 是 QT 对象模型的核心,绝大部分的 QT 类都是从这个类继承而来.这个模型的中心特征就是一个叫做信号和槽(signaland slot)的机 ...