Description

  

  传送门

  

  题意简述:将序列划分成任意多段,从每一段选出一个数\(x\),获得\(在这一段出现的次数x*(x在这一段出现的次数)\)的贡献。求总贡献最大值。

  

  

  

  

  

Solution

  

​  首先,要发现一个很重要的性质:如果某一段选了\(x\),那么这一段一定是以\(x\)开头、以\(x\)结尾的一段。否则,可以将此段缩减至以\(x\)开头、以\(x\)结尾的更小的一段,虽然贡献没有变,但留给其他段的机会更多。

  

  设\(f_i\)表示\(1...i\)的贡献最大值。记\(a_i\)表示\(i\)的数值,\(b_i\)表示\(a_i\)在相同的值中是第几个出现的。显然如果要从别的\(f_j\)转移到\(f_i\),必须满足\(a_{j+1}==a_i\)。我们有转移方程:

\[f_i=\max \{f_{j-1}+a_i(b_i-b_j+1)^2\}\;\;\;j\le i,a_j=a_i
\]

  设\(j\)为最优转移点:

\[\begin{aligned}
f_i&=f_{j-1}+a_i(b_i-(b_j-1))^2\\
f_i&=f_{j-1}+a_i(b_i^2-2b_i(b_j-1)+(b_j-1)^2)\\
f_i&=f_{j-1}+a_ib_i^2-2a_ib_i(b_j-1)+a_i(b_j-1)^2\\
f_{j-1}+a_i(b_j-1)^2&=2a_ib_i(b_j-1)+f_i-a_ib_i^2
\end{aligned}
\]

  这其实是一个直线的式子:\(k=2a_ib_i\),\(x=(b_j-1)\),\(b=(f_i-a_ib_i^2)\),\(y=f_{j-1}+a_i(b_j-1)^2\).

  

  其中\(a_i\)看似和\(i\)有关,无法继续推理。但由于转移的\(j\)满足\(a_j=a_i\),所以每一个位置的数在参与上述DP时,相关联的\(a\)其实就是每一个元素自己的数值,是一个定值。

  

  把每一个元素看成二维平面的一个点\((x,y)\)。由于最优转移相当于最大化截距,那么最优转移点\(j\)可以看做在斜率为\(k\)的时候上凸包碰到的第一个点。

  

  那么我们扫描序列时,维护每一个数值对应的上凸包,每次查询时在上面二分即可。

  

  时间复杂度\(\mathcal O(n \lg n)\)。

  

  当然,也可以用斜率优化直接做。

  

  

  

Code

  

#include <cstdio>
#include <vector>
#define k(i) (2LL*a[i]*b[i])
#define x(i) (b[i]-1LL)
#define y(i) (f[i-1]+1LL*a[i]*(b[i]-1)*(b[i]-1))
#define b(i) (f[i]-1LL*a[i]*b[i]*b[i])
#define pb push_back
#define db pop_back
using namespace std;
typedef long long ll;
const int N=100005,S=10005;
const double EPS=1e-6;
int n,a[N],ecnt[S],b[N];
ll f[N];
vector<int> s[S];
int slen[S];
double slope(int u,int v){return 1.0*(y(v)-y(u))/(x(v)-x(u));}
int query(int col,int k){
k=2*col*k;
int l=0,r=slen[col]-2,mid;
while(l<=r){
mid=(l+r)>>1;
if(slope(s[col][mid],s[col][mid+1])-EPS<=k) r=mid-1;
else l=mid+1;
}
return s[col][l];
}
void insert(int col,int i){
int sz=slen[col];
while(sz>1&&slope(s[col][sz-2],s[col][sz-1])<slope(s[col][sz-1],i))
sz--,slen[col]--,s[col].db();
s[col].pb(i);
slen[col]++;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",a+i);
b[i]=++ecnt[a[i]];
}
for(int i=1;i<=n;i++){
insert(a[i],i);
int j=query(a[i],b[i]);
f[i]=(j?f[j-1]:f[i-1])+1LL*a[i]*(b[i]-b[j]+1)*(b[i]-b[j]+1);
}
printf("%lld\n",f[n]);
return 0;
}

【BZOJ4709】【Jsoi2011】柠檬的更多相关文章

  1. bzoj4709: [Jsoi2011]柠檬 斜率优化

    题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...

  2. bzoj4709 [jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N  ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...

  3. BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...

  4. BZOJ4709 JSOI2011柠檬(动态规划)

    首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...

  5. [BZOJ4709][JSOI2011]柠檬(斜率优化DP)

    显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include< ...

  6. [BZOJ4709][JSOI2011]柠檬 决策单调性优化dp

    题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维 ...

  7. BZOJ4709: [Jsoi2011]柠檬(决策单调性)

    题意 题目链接 Sol 结论:每次选择的区间一定满足首位元素相同.. 仔细想想其实挺显然的,如果不相同可以删掉多着的元素,对答案的贡献是相同的 那么设\(f[i]\)表示到第\(i\)个位置的最大价值 ...

  8. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  9. 4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 https://www.lydsy.com/JudgeOnline/problem.php?id=4709 分析: 决策单调性+栈+二分. 首先挖掘性质:每个段选 ...

  10. 【BZOJ4709】柠檬(动态规划,单调栈)

    [BZOJ4709]柠檬(动态规划,单调栈) 题面 BZOJ 题解 从左取和从右取没有区别,本质上就是要分段. 设\(f[i]\)表示前\(i\)个位置的最大值. 那么相当于我们枚举一个前面的位置\( ...

随机推荐

  1. php-7.1.11-64位

    php-7.1.11-Win32-VC14-x64.zip 链接:https://pan.baidu.com/s/1w8-fJo8-oWrriHyWpU5Fpg 提取码:bd0e 复制这段内容后打开百 ...

  2. HTML6的10个高级新特性

    网络技术正趋向于发展为一个巨大的移动APP市场,在Web开发的革命浪潮中起着指示性作用,自HTML引入以来,应用程序变得So easy,web开发中运用先进技术也很容易处理各种复杂Bug. 作为专业的 ...

  3. NO17--vue父子组件间单向数据流的解决办法

    在上一篇中讲解了父子组件之间是如何传值的,如果子组件需要改变传过来的数据供自己使用,或者想在子组件中改变传过来的数据并同步到父组件,那么直接改肯定是不行的,如果你这么做了,Vue 会在控制台给出警告. ...

  4. SQL Server存储过程用法介绍

    存储过程其实就是已预编译为可执行过程的一个或多个SQL语句. 通过调用和传递参数即可完成该存储过程的功能. 前面有介绍过存储过程的一些语法,但是没有详细示例,今天我们来一起研究一下存储过程. 提高性能 ...

  5. Echarts服务端生成图片

    Echarts是百度发布的一套优秀的浏览器端图表控件,Echarts是基于html5的cavens绘图实现.而使用server端生成图片无法借用浏览器端渲染.通用的做法有两种: 是用headless浏 ...

  6. nginx中location详解

    Location block 的基本语法形式是: location [=|~|~*|^~|@] pattern { ... } [=|~|~*|^~|@] 被称作 location modifier ...

  7. Oracle purge 用法介绍

    http://blog.csdn.net/indexman/article/details/27379597

  8. 配置idea

    http://www.cnblogs.com/yangyquin/p/5285272.html

  9. 2017秋软工 —— 本周PSP

    1. PSP 2. PSP饼图 3. 累计进度条 4. 累计折线图

  10. 关于react虚拟DOM的研究

    1.传统的前端是这样的,我在学校也都是这样做的,html(jsp)主要负责提供所有的DOM节点,而javascript负责动态效果,比如按钮点击,图片轮播等,这样的话javascript如何组织结构是 ...