题目描述

Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现

在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。

今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现

在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公

倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整

数 x 满足:

1. x 和 a0 的最大公约数是 a1;

2. x 和 b0 的最小公倍数是 b1。

Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的

x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮

助他编程求解这个问题。

输入输出格式

输入格式:

第一行为一个正整数 n,表示有 n 组输入数据。接下来的 n 行每

行一组输入数据,为四个正整数 a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入

数据保证 a0 能被 a1 整除,b1 能被 b0 整除。

输出格式:

输出文件 son.out 共 n 行。每组输入数据的输出结果占一行,为一个整数。

对于每组数据:若不存在这样的 x,请输出 0;

若存在这样的 x,请输出满足条件的 x 的个数;

输入输出样例

输入样例#1:

2
41 1 96 288
95 1 37 1776
输出样例#1:

6
2

说明

【说明】

第一组输入数据,x 可以是 9、18、36、72、144、288,共有 6 个。

第二组输入数据,x 可以是 48、1776,共有 2 个。

【数据范围】

对于 50%的数据,保证有 1≤a0,a1,b0,b1≤10000 且 n≤100。

对于 100%的数据,保证有 1≤a0,a1,b0,b1≤2,000,000,000 且 n≤2000。

NOIP 2009 提高组 第二题


1.在线分解a0,a1,b0,b1的质因子,然后判断每个质因子有几种选择,乘法原理即可

首先,题目保证ea0>=ea1和eb0<=eb1

对于a0和a1,

ea0>ea1则ex0=ea1

ea0==ea1则ex0>=ea1

同样像b0和b1

判断的时候不用特别繁琐,可以简化一下,只处理不成立(*0)和多种选择的

2.暴力枚举b1的约数+各种优化

推导:

lcm(x,b0)=x*b0/gcd(x,b0)=b1 => b1*gcd(x,b0)=x*b0 => gcd(x,b0)=x*b0/b1 => gcd(b1/b0,b1/x)=1

优化一:gcd(a,b)=c -->gcd(a/c,b/c)=1

优化二:先判断整除

注意因子枚举到sqrt(b1)而不是sqrt(b1)+1,然后i和b1/i都要试试

//唯一分解定理
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,a0,a1,b0,b1,a,b,ans;
int vis[N],p[N],cnt=;
void era(int n){
int m=sqrt(n)+;
for(int i=;i<=m;i++) if(!vis[i])
for(int j=i*i;j<=n;j+=i) vis[j]=;
for(int i=;i<=n;i++) if(!vis[i]) p[++cnt]=i;
}
void solve(int p){
int ea0=,ea1=,eb0=,eb1=;
while(a0%p==) ea0++,a0/=p;
while(a1%p==) ea1++,a1/=p;
while(b0%p==) eb0++,b0/=p;
while(b1%p==) eb1++,b1/=p;
if(ea0==ea1&&eb0==eb1){
if(ea1<=eb1) ans*=eb1-ea1+;
else ans=;
}else if(ea0!=ea1&&eb0!=eb1&&ea1!=eb1) ans=;
}
int main(int argc, const char * argv[]){
era();
n=read();
while(n--){
a0=read();a1=read();b0=read();b1=read();
ans=;
for(int i=;i<=cnt;i++) solve(p[i]);
if(b1!=) solve(b1);
printf("%d\n",ans);
}
return ;
}
//暴力
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,a0,a1,b0,b1,a,b;
inline int gcd(int a,int b){return b==?a:gcd(b,a%b);}
inline int cal(int i){
if(i%a1) return ;
else return gcd(i/a1,a)==&&gcd(b,b1/i)==;
}
int main(int argc, const char * argv[]){
n=read();
while(n--){
a0=read();a1=read();b0=read();b1=read();
int ans=,m=sqrt(b1);
a=a0/a1,b=b1/b0;
for(int i=;i<=m;i++) if(b1%i==){
ans+=cal(i);
if(i*i!=b1) ans+=cal(b1/i);
}
printf("%d\n",ans);
}
return ;
}

NOIP2009Hankson 的趣味题[唯一分解定理|暴力]的更多相关文章

  1. luogu 1072 Hankson 的趣味题 唯一分解定理+线性筛

    貌似是比大多数题解优的 $O(n^2logn)$ ~ Code: #include <bits/stdc++.h> #define N 50004 #define setIO(s) fre ...

  2. 一本通1626【例 2】Hankson 的趣味题

    1626:[例 2]Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考 ...

  3. 洛谷P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

  4. NOIP 2009 Hankson 的趣味题

    洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...

  5. B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板

    You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...

  6. CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)

    http://codeforces.com/problemset/problem/992/B  题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...

  7. uva10375 Choose and Divide(唯一分解定理)

    uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...

  8. 算法训练 Hankson的趣味题

    算法训练 Hankson的趣味题   时间限制:1.0s   内存限制:64.0MB        问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...

  9. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

随机推荐

  1. 如何汉化XAF应用

    这是一个入门级的问题,应网友请求,总结一下XAF汉化过程的几个关键点. 一.所有Dev的控件的汉化,Dev官方有汉化文件.点击下载15.2版本. 正版用户登陆至官网是有专门的下载界面的,并且可以参与汉 ...

  2. 如何在MFC界面开发中响应Button按钮的Down和Up事件

    通过尝试有两种方案可以解决这个问题,第一种方案是通过PreTranslateMessage函数在调度消息之前对消息类型进行筛选,第二种方案是重载CButton类,在重载后的类CForTestButto ...

  3. [TypeScript] 建立与使用AMD Library

    [TypeScript] 建立与使用AMD Library 前言 使用Visual Studio开发TypeScript项目时,开发人员可以将可重用的程序代码,封装为AMD Library来提供其他开 ...

  4. JavaScript进阶篇QA总结

    Q1:常用的运算符有哪些?他们的优先级是怎样的?A1:1.算术运算符:加(+).减(-).乘(×).除(÷),自加一(++),自减一(--):2.比较运算符:大于(>).小于(<).大于等 ...

  5. Web系统开发构架再思考-前后端的完全分离

    前言 前后端完全分离其实一直是Web开发人员的梦想,也一直是我的梦想,遥想当年,无论是直接在代码里面输出HTML,还是在HTML里面嵌入各种代码,都不能让人感到满意.期间的痛苦和纠结,我想所有Web开 ...

  6. border-radius结合transition的一个小应用(动画)

    <head lang="en"> <meta charset="UTF-8"> <title></title> ...

  7. 云南南天电子信息产业股份有限公司某站SQL注入漏洞

      220.163.13*.**   root@kali:~# sqlmap -u http://www.****.com.cn/****.Aspx?keyword= -v 1 --dbs --tam ...

  8. C++序列化、反序列化

    几个常见的库 http://stackoverflow.com/questions/3637581/fastest-c-serialization Boost: Fast, assorted C++ ...

  9. 实用控件分享:自定义逼真相机光圈View

    最近手机界开始流行双摄像头,大光圈功能也应用而生.所谓大光圈功能就是能够对照片进行后期重新对焦,其实现的原理主要是对拍照期间获取的深度图片与对焦无穷远的图像通过算法来实现重新对焦的效果. 在某双摄手机 ...

  10. TableViewCell重影问题

    UITableView继承自UIScrollview,是苹果为我们封装好的一个基于scroll的控件.上面主要是一个个的UITableViewCell,可以让UITableViewCell响应一些点击 ...