单调队列优化O(N)建BST P1377 [TJOI2011]树的序
洛谷 P1377 [TJOI2011]树的序 (单调队列优化建BST
题意分析
本题思路很简单,根据题意,我们利用所给的Bst生成序将Bst建立起来,然后输出该BST的先序遍历即可;
但,如果我们不加优化,建BST的时间复杂度在最劣情况下将达到O(n^2),显然,在1e5的数据下是过不去的,所以我们考虑利用利用单调队列优化来建BST;
算法思路
BST建树本质上便是按照权值将新加入节点插入到对应的位置,该过程受插入顺序
影响
我们考虑可以将读入的生成序列的下标变成权值,本身权值变为下标
for(int i=1;i<=n;i++){
x=read();
a[x]=i;
}
因为权值为1-n的序列,我们将该数组从1-n遍历,本质便是按权值从小到大遍历(如
果权值不是1-n的序列,将其离散化即可)
我们按该方式维护一个单调队列,当一个新数进队列后不在向前更新时,我们便将
该节点插到单调队列中它左侧节点的右子树中,原因很简单,该节点左侧的节点先
入队列,说明左侧权值一定比该节点小,故将该点插入到左侧节点的右子树上,假设
该节点进队列过程中压掉了节点,则将该节点插入到被它压掉的最后一个节点的左
子树上,我们用此方法便可以在O(n)的时间复杂度下建成一颗bst了,建树代码如下
int tot=0;
int pos=0;
for(int i=1;i<=n;i++){
tot=pos;
while(pos&&a[q[pos]]>a[i]){
pos--;
}
if(pos){
r[q[pos]]=i;
}
if(pos<tot){
l[i]=q[pos+1];
}
q[tot=++pos]=i;
}
为什这样建树可以建出正确的bst呢?
我们举个例子
比如3 2 4 1这个序列
排序后变为了1(4) 2(2) 3(1) 4(3)
括号内为权值,括号外为下标
第一步,插入1(4)

第二步,插入2(2)因为在单调队列中我们将其压掉了所以,将1(4)a插入到2(2)的左子树中

第三步
同理

第四步,目前单调队列中只有3(1)新点4(3)进入后无法压掉3(1)便放在3(1)的左子树中

建树完毕,我们按权值加入,每进入一个点便插入到目前的合适位置,当更优的点
出现时,倘若恰好将此点压掉,我们便将上一个点与该点的连接关系断开,将新节
点插入到这两个节点之间,如下图

红色为新加入节点

为什么后续加入的节点不会插到以经压入的节点下呢?得益于我们加入节点是按权值从小到大加入的
比如说上图,既然红色节点已经入队列了,能红色节点的子树中插入的节点一定小于红色节点的权值,但已经没有了
这就是整个算法的思路
完整代码如下
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int maxn=1e6+10;
inline int read(){
int ret=0;
int f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-'){
f=-f;
}
ch=getchar();
}
while(ch>='0'&&ch<='9'){
ret=ret*10+(ch^'0');
ch=getchar();
}
return ret*f;
}
int q[maxn];
int l[maxn];
int r[maxn];
int a[maxn];
int n;
void dfs(int ro){
if(!ro){
return ;
}
cout<<ro<<" ";
dfs(l[ro]);
dfs(r[ro]);
return ;
}
int main(){
n=read();
int x;
for(int i=1;i<=n;i++){
x=read();
a[x]=i;
}
int tot=0;
int pos=0;
for(int i=1;i<=n;i++){
tot=pos;
while(pos&&a[q[pos]]>a[i]){
pos--;
}
if(pos){
r[q[pos]]=i;
}
if(pos<tot){
l[i]=q[pos+1];
}
q[tot=++pos]=i;
}
dfs(q[1]);
return 0;
}
完结撒花!
单调队列优化O(N)建BST P1377 [TJOI2011]树的序的更多相关文章
- 洛谷 P1377 [TJOI2011]树的序 解题报告
P1377 [TJOI2011]树的序 题目描述 众所周知,二叉查找树的形态和键值的插入顺序密切相关.准确的讲:1.空树中加入一个键值\(k\),则变为只有一个结点的二叉查找树,此结点的键值即为\(k ...
- Luogu P1377 [TJOI2011]树的序:离线nlogn建二叉搜索树
题目链接:https://www.luogu.org/problemnew/show/P1377 题意: 有一棵n个节点的二叉搜索树. 给出它的插入序列,是一个1到n的排列. 问你使得树的形态相同的字 ...
- [洛谷 P1377] TJOI2011 树的序
问题描述 众所周知,二叉查找树的形态和键值的插入顺序密切相关.准确的讲:1.空树中加入一个键值k,则变为只有一个结点的二叉查找树,此结点的键值即为k:2.在非空树中插入一个键值k,若k小于其根的键值, ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
- BZOJ 2806: [Ctsc2012]Cheat [广义后缀自动机 单调队列优化DP 二分]
2806: [Ctsc2012]Cheat 题意: 多个主串和多个询问串,每次询问将询问串分成多个连续子串,如果一个子串长度>=L且在主串中出现过就是熟悉的 如果熟悉的字符串长度>=询问串 ...
- 2018.09.06 烽火传递(单调队列优化dp)
描述 烽火台是重要的军事防御设施,一般建在交通要道或险要处.一旦有军情发生,则白天用浓烟,晚上有火光传递军情. 在某两个城市之间有 n 座烽火台,每个烽火台发出信号都有一定的代价.为了使情报准确传递, ...
- Mice and Holes 单调队列优化dp
Mice and Holes 单调队列优化dp n个老鼠,m个洞,告诉你他们的一维坐标和m个洞的容量限制,问最小总距离.1 ≤ n, m ≤ 5000. 首先列出朴素的dp方程:\(f[i][j] ...
- BZOJ 2806 [Ctsc2012]Cheat ——后缀自动机 单调队列优化DP
先建出广义后缀自动机. 然后跑出文章中每一个位置的最大匹配距离. 然后定义$f[i]$表示匹配到以$i$结尾的串时,最长的匹配距离. 显然可以二分$L$的取值. 然后容易得到$DP$方程 $f[i]= ...
- 【BZOJ2806】【CTSC2012】Cheat - 广义后缀自动机+单调队列优化DP
题意: Description Input 第一行两个整数N,M表示待检查的作文数量,和小强的标准作文库的行数 接下来M行的01串,表示标准作文库 接下来N行的01串,表示N篇作文 Output N行 ...
随机推荐
- akka-grpc - 基于akka-http和akka-streams的scala gRPC开发工具
关于grpc,在前面的scalaPB讨论里已经做了详细的介绍:google gRPC是一种全新的RPC框架,在开源前一直是google内部使用的集成工具.gRPC支持通过http/2实现protobu ...
- 产品经理培训教程视频大全与模板Axure rp9与8视频教程元件库模板
注意:请仔细阅读购买,一旦发货百度网盘链接不能退~ 自动发邮件到买家留言处的邮箱,或注册淘宝时的邮箱自动通过旺旺给您发货还可以访问网页提取链接自助提取(复制到浏览器): http://4k5.cn/V ...
- MySQL 索引结构
谈到 MYSQL 索引服务端的同学应该是熟悉的不能再熟悉,新建表的时候怎么着都知道先来个主键索引,对于经常查询的列也会加个索引加快查询速度.那么 MYSQL 索引都有哪些类型呢?索引结构是什么样的呢? ...
- Mysql 5.6创建新用户并授权指定数据库相应权限
一.环境 Centos 6.9 Mysql 5.6.40 二.步骤 1.使用root用户登陆mysql mysql -uroot -p 输入密码: 2.创建新用户 CREATE USER 'user' ...
- seo工程师是什么,需要什么技能?
http://www.wocaoseo.com/thread-222-1-1.html seo工程师是什么,SEO工程师是目前需求较大的一种职业,是搜索引擎营销的一种,主要是是通过网站优化技 ...
- JavaScript闭包(内存泄漏、溢出以及内存回收),超直白解析
1 引言 变量作用域 首先我们先铺垫一个知识点--变量作用域: 变量根据作用域的不同分为两种:全局变量和局部变量. 函数内部可以使用全局变量. 函数外部不可以使用局部变量. 当函数执行完毕,本作用域内 ...
- Java实现的二叉堆以及堆排序详解
一.前言 二叉堆是一个特殊的堆,其本质是一棵完全二叉树,可用数组来存储数据,如果根节点在数组的下标位置为1,那么当前节点n的左子节点为2n,有子节点在数组中的下标位置为2n+1.二叉堆类型分为最大堆( ...
- webdriver实现简单的窗口切换
webdriver实现简单的窗口切换,也只能是简单的,因为目前处于学习阶段,复杂的情况现在还没碰到过.之前写过关于一个小demo的总结,就有提到过在新开窗口进行操作的情况,用以下一句就可以搞定了,la ...
- UniRapidJson
https://github.com/takezoh/UniRapidJson 如何编译安卓 cd ~/UniRapidJson/build/android make 生成的so可以在 /Users/ ...
- 利用阿里云服务器免费体验word press博客、个人网站
本文首发于我的个人博客:https://chens.life/create-wordpress-blog.html 前言 目前市面上有许许多多的虚拟云服务器ECS,例如阿里云.华为云.又拍云等等,他们 ...