比赛链接:https://codeforces.com/contest/1409

A. Yet Another Two Integers Problem

题意

给出两个数 $a$ 和 $b$,有以下两种操作:

  • $a+=k$
  • $a-=k$
  • $k \in [1, 10]$

问将 $a$ 变为 $b$ 最少需要操作多少次。

题解

$a,b$ 之差的绝对值对 $10$ 取上整。

代码

#include <bits/stdc++.h>
using namespace std; void solve() {
int a, b;
cin >> a >> b;
cout << (abs(b - a) + 9) / 10 << "\n";
} int main() {
int t;
cin >> t;
while (t--) solve();
}

B. Minimum Product

题意

给出两个数 $a$ 和 $b$,每次可以选择一个数减一,该操作最多执行 $k$ 次,同时要求 $a$ 不能小于 $x$,$b$ 不能小于 $y$,问 $a \cdot b$ 的最小值。

题解

如果给一个数减一,最佳方案就是一直给它减一,减到底后再减另一个数。

然后枚举先减 $a$ 还是先减 $b$ 即可。

代码一

#include <bits/stdc++.h>
using namespace std; void solve() {
int a, b, x, y, n;
cin >> a >> b >> x >> y >> n;
auto cal = [](int a, int b, int x, int y, int n) {
int mi = min(n, a - x);
n -= mi;
a -= mi;
mi = min(n, b - y);
n -= mi;
b -= mi;
return 1ll * a * b;
};
cout << min(cal(a, b, x, y, n), cal(b, a, y, x, n)) << "\n";
} int main() {
int t;
cin >> t;
while (t--) solve();
}

代码二

#include <bits/stdc++.h>
using namespace std; void solve() {
int a, b, x, y, n;
cin >> a >> b >> x >> y >> n;
auto cal = [&](int a, int b, int x, int y) {
int da = min(n, a - x);
int db = min(n - da, b - y);
return 1ll * (a - da) * (b - db);
};
cout << min(cal(a, b, x, y), cal(b, a, y, x)) << "\n";
} int main() {
int t;
cin >> t;
while (t--) solve();
}

C. Yet Another Array Restoration

题意

给出一个数组的大小 $n$ 和其中的两个元素 $x,y(x<y)$,试还原这个数组,要求:

  • 数组中有 $n$ 个不同的正整数
  • 数组排序后相邻元素之差相等
  • 数组中的最大值尽可能地小

题解

数组相邻元素之差一定是 $y-x$ 的因子,据此分为以下三种情况:

  • 因子过小,$x$ 到 $y$ 间可以容纳的元素个数大于 $n-2$,继续寻找更大的因子
  • 因子适中,$x$ 到 $y$ 间可以容纳的元素个数等于 $n-2$,此时以 $x$ 为起点,因子大小为步长输出 $n$ 次即可
  • 因子过大,$x$ 到 $y$ 间可以容纳的元素个数小于 $n-2$,因为最大值要尽量小,所以应尽可能地向 $x$ 的左端拓展正起点

代码

#include <bits/stdc++.h>
using namespace std; void solve() {
int n, x, y;
cin >> n >> x >> y;
int len = y - x;
for (int p = 1; p <= len; p++) {
if (len % p == 0) {
int can_hold = len / p - 1;
if (can_hold > n - 2) {
continue;
} else if (can_hold == n - 2) {
for (int i = x; i <= y; i += p)
cout << i << " \n"[i == y];
return;
} else {
int extra = n - 2 - can_hold;
int cnt = 0;
for (int i = x - p * min(extra, x / p - (x % p == 0)); cnt < n; i += p)
cout << i << " \n"[++cnt == n];
return;
}
}
}
} int main() {
int t;
cin >> t;
while (t--) solve();
}

D. Decrease the Sum of Digits

题意

给出一个数 $n$,每次可以给 $n$ 加上 $1$,找出使得 $n$ 的数位之和 $\le s$ 的最少操作数。

题解

给一个数位操作最终一定会使该数位的值变为 $0$(否则会一直增加数位之和),从低位到高位模拟即可。

代码

#include <bits/stdc++.h>
using namespace std; int sum(string s) {
int res = 0;
for (char c : s) res += c - '0';
return res;
} void solve() {
string n;
int s;
cin >> n >> s;
long long ans = 0, p = 1;
n = "0" + n;
for (int i = n.size() - 1; sum(n) > s; i--) {
ans += ('9' + 1 - n[i]) * p;
n[i] = '0';
++n[i - 1];
p *= 10;
}
cout << ans << "\n";
} int main() {
int t;
cin >> t;
while (t--) solve();
}

E. Two Platforms

题意

给出一个平面 $n$ 个点的坐标,有两个长为 $k$ 的平台,每个平台可以选择一个位置固定放置,问当所有点同时开始下落后,两个平台加起来最多可以接到多少个点。

题解

因为平台的纵坐标可以无限低所以只考虑横坐标即可。

将点的横坐标排序并计算两个 $dp$ 数组:

  • $dp1$ 以该点为起点放置平台可以接到多少个点
  • $dp2$ 以该点或之后的点为起点放置平台最多可以接到多少个点

枚举第一个平台的起点 $i$,然后找到第一个坐标大于 $x+k$ 的点 $j$,答案即 $max(dp1[i] + dp2[j])$ 。

代码一

二分查找点 $j$

#include <bits/stdc++.h>
using namespace std; void solve() {
int n, k;
cin >> n >> k;
vector<int> x(n), y(n);
for (int i = 0; i < n; i++)
cin >> x[i];
for (int i = 0; i < n; i++)
cin >> y[i];
sort(x.begin(), x.end());
vector<int> dp1(n);
for (int i = 0; i < n; i++) {
int j = upper_bound(x.begin(), x.end(), x[i] + k) - x.begin();
dp1[i] = j - i;
}
vector<int> dp2(dp1);
for (int i = n - 2; i >= 0; i--)
dp2[i] = max(dp2[i], dp2[i + 1]);
int ans = 0;
for (int i = 0; i < n; i++) {
int j = upper_bound(x.begin(), x.end(), x[i] + k) - x.begin();
ans = max(ans, dp1[i] + (j < n ? dp2[j] : 0));
}
cout << ans << "\n";
} int main() {
int t;
cin >> t;
while (t--) solve();
}

代码二

双指针查找点 $j$

#include <bits/stdc++.h>
using namespace std; void solve() {
int n, k;
cin >> n >> k;
vector<int> x(n), y(n);
for (int i = 0; i < n; i++)
cin >> x[i];
for (int i = 0; i < n; i++)
cin >> y[i];
sort(x.begin(), x.end());
vector<int> dp1(n);
for (int i = 0, j = 0; i < n; i++) {
while (j < n and x[j] <= x[i] + k)
++j;
dp1[i] = j - i;
}
vector<int> dp2(dp1);
for (int i = n - 2; i >= 0; i--)
dp2[i] = max(dp2[i], dp2[i + 1]);
int ans = 0;
for (int i = 0, j = 0; i < n; i++) {
while (j < n and x[j] <= x[i] + k)
++j;
ans = max(ans, dp1[i] + (j < n ? dp2[j] : 0));
}
cout << ans << "\n";
} int main() {
int t;
cin >> t;
while (t--) solve();
}

F. Subsequences of Length Two

题意

给出两个小写字母串 $s$ 和 $t$,$t$ 长为 $2$。每次可以替换 $s$ 中的一个字母,该操作最多执行 $k$ 次,问 $t$ 作为 $s$ 的子序列最多可以出现多少次。

题解

$dp[i][j][k]$ 为前 $i$ 位操作 $j$ 次后有 $k$ 个 $t_0$ 时的子序列个数。

代码

#include <bits/stdc++.h>
using namespace std;
constexpr int INF = 1e9; void chmax(int &x, int y) {
x = max(x, y);
} int main() {
int n, k;
cin >> n >> k;
string s, t;
cin >> s >> t;
vector<vector<vector<int>>> dp(n + 1, vector<vector<int>>(n + 1, vector<int>(n + 1, -INF)));
dp[0][0][0] = 0;
for (int i = 0; i < n; i++) {
for (int ck = 0; ck <= k; ck++) {
for (int cnt0 = 0; cnt0 <= n; cnt0++) {
if (dp[i][ck][cnt0] == -INF) continue;
int e0 = s[i] == t[0];
int e1 = s[i] == t[1];
int e01 = t[0] == t[1];
//不操作
chmax(dp[i + 1][ck][cnt0 + e0], dp[i][ck][cnt0] + (e1 ? cnt0 : 0));
if (ck < k) {
//s[i]变为t[0]
chmax(dp[i + 1][ck + 1][cnt0 + 1], dp[i][ck][cnt0] + (e01 ? cnt0 : 0));
//s[i]变为t[1]
chmax(dp[i + 1][ck + 1][cnt0 + e01], dp[i][ck][cnt0] + cnt0);
}
}
}
}
cout << *max_element(dp[n][k].begin(), dp[n][k].end()) << "\n";
}

Codeforces Round #667 (Div. 3)的更多相关文章

  1. Codeforces Round #667 (Div. 3) B、C、D、E 题解

    抱歉B.C题咕了这么久 B. Minimum Product #枚举 #贪心 题目链接 题意 给定四个整数\(a, b, x, y\),其中\(a\geq x, b\geq y\),你可以执行不超过\ ...

  2. Codeforces Round #667 (Div. 3) E. Two Platforms (双指针)

    题意:有\(n\)个点往下落,你可以在最下面放两个长度为\(k\)的板子,问做多能接到多少个点. 题解:这题给纵坐标\(y\)完全没有用,我们先对横坐标\(x\)排序,然后从左边开始枚举,用\(l[i ...

  3. Codeforces Round #667 (Div. 3) D. Decrease the Sum of Digits (贪心)

    题意:给你一个正整数\(n\),每次可以对\(n\)加一,问最少操作多少次是的\(n\)的所有位数之和不大于\(s\). 题解:\(n\)的某个位置上的数进位,意味这后面的位置都可以被更新为\(0\) ...

  4. Codeforces Round #667 (Div. 3) C. Yet Another Array Restoration (数学)

    题意:给你两个数字\(x\)和\(y\),让你构造一个长度为\(n\)的序列,要求包含\(x\)和\(y\),并且排序后相邻两项的差值相等. 题解:有排序后相邻两项的差值相等可知,构造的序列排序后一定 ...

  5. Codeforces Round #667 (Div. 3) B. Minimum Product (贪心,数学)

    题意:给你\(a\)和\(b\)两个数,每次操作可以是任意一个数\(-1\),最多操作\(n\),并且\(a\ge x\),\(b\ge y\),求操作后\(a*b\)的最小值. 题解:观察样例并且在 ...

  6. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  7. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  8. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  9. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

随机推荐

  1. Linux学习笔记 | 将默认镜像源修改为国内镜像源

    前言: 在使用Linux操作系统的时候,难免会下载各种安装包,而Linux使用的下载源服务器属于国外,下载速度相对国内会慢很多,像日常使用的阿里云和腾讯云等国内服务器厂商,镜像源都默认为自己相关的镜像 ...

  2. MySQL查询优化之 index 索引的分类和使用

    索引的分类 主键索引 (PRIMARY KEY) 唯一的标识符, 主键不可重复, 只能有一列作为主键 唯一索引 (Unique KEY) 避免重复的列出现, 唯一索引可以重复, 多个列都可以标识为唯一 ...

  3. 创建一个简单MyBatis程序

    文章目录 MyBatis基础 MyBatis 简介 创建一个MyBatis程序 1. 创建Java项目 2. 加载MyBatis包 3. 编写POJO类和映射文件 4.创建mybatis-config ...

  4. Over Permission - Pikachu

    概述: 如果使用A用户的权限去操作B用户的数据,A的权限小于B的权限,如果能够成功操作,则称之为越权操作. 越权漏洞形成的原因是后台使用了不合理的权限校验规则导致的. 一般越权漏洞容易出现在权限页面( ...

  5. ctfhub技能树—web前置技能—http协议—302跳转

    开启靶机 打开环境,查看显示 点击Give me Flag后发生跳转 根据题目提示为HTTP临时重定向 简单记录一下HTTP临时重定向是什么 HTTP重定向:服务器无法处理浏览器发送过来的请求(req ...

  6. 微服务网关2-搭建Gateway服务

    一.创建父模块infrastructure 1.创建模块 在guli_parent下创建普通maven模块 Artifact:infrastructure 2.删除src目录 二.创建模块api_ga ...

  7. QQ刷屏助手

    本人小学生,求大佬轻点儿 制作原因 原因很简单,还不是想报仇呗! 代码 1 # 原理是先将需要发送的文本放到剪贴板中,然后将剪贴板内容发送到qq窗口 2 # 之后模拟按键发送enter键发送消息 3 ...

  8. 计算机网络安全 —— 报文摘要算法 ME5 (三)

    一.报文摘要算法基本概念 使用加密通常可达到报文鉴别的目的,因为伪造的报文解密后一般不能得到可理解的内容.但简单采用这种方法,计算机很难自动识别报文是否被篡改.另外,对于不需要保密而只需要报文鉴别的网 ...

  9. java虚拟机入门(五)- 常见垃圾回收器及jvm实现

    上节讲完了垃圾回收的基础,包括java的垃圾是什么,如何寻找以及常用的垃圾回收算法,那么那么多的理论知识讲完了,具体是什么样的东西在做着回收垃圾的事情呢?我们接下来就好好聊聊jvm中常用的垃圾回收器. ...

  10. MySQL之谓词下推

    MySQL之谓词下推 什么是谓词 在SQL中,谓词就是返回boolean值即true或者false的函数,或是隐式转换为boolean的函数.SQL中的谓词主要有 LKIE.BETWEEN.IS NU ...