企业签名和TF签名哪个好?TF签名和企业签名怎么选?
很多开发者在App无法上架Appstore,需要内测或者开放给苹果用户使用的时候,需要选择企业签名来帮助自己的App开放下载链接,给苹果用户使用。苹果企业签名的类型有很多,TF签名最近又很火爆,那么企业签名和TF签名我们应该怎么选呢?
我们首先来分析一下企业签名和TF签名的优缺点吧。
企业签名的优点很明显,就是不需要苹果账号、也不需要苹果审核,同时,通过企业签名的方式上架的App没有下载数量上的限制。缺点就是稳定性很难说,有可能会掉签。如果不是在微导流这种靠谱的平台进行企业签名的话,个人企业签名商很难及时补签,解决问题。而微导流的企业签名也分成3个种类,其中超稳版企业签名可以签合同,每个月最多掉签1次,超过1次全额退款。
TF签名刚好弥补了企业签名的缺点,因为TF签名是通过Testflight的方式上架,而Testflight是苹果官方的App内测商店,所以稳定性很高,不会掉签。但是TF签名也有一定的劣势,比如TF签名的有效期一般为3个月,有效期一过,就要重新更新用户才能下载。好在之前已经下载App的用户只要不卸载,还是能正常使用App的。而TF签名与企业签名的不限制下载量不同,TF签名一般有10000个下载数量的限制。如果想要无限量下载的TF签名,也欢迎咨询微导流。
以上就是企业签名和TF签名的优缺点分析了,小伙伴们知道该怎么选了吗?如果想了解更多企业签名和TF签名的内容,可以登录微导流官网。对企业签名和TF签名还有疑问的,也可以咨询微导流的客服。
企业签名和TF签名哪个好?TF签名和企业签名怎么选?的更多相关文章
- tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable—Jason niu
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import te ...
- 深度学习原理与框架-Tensorflow基本操作-变量常用操作 1.tf.random_normal(生成正态分布随机数) 2.tf.random_shuffle(进行洗牌操作) 3. tf.assign(赋值操作) 4.tf.convert_to_tensor(转换为tensor类型) 5.tf.add(相加操作) tf.divide(相乘操作) 6.tf.placeholder(输入数据占位
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- TensorFlow 辨异 —— tf.add(a, b) 与 a+b(tf.assign 与 =)、tf.nn.bias_add 与 tf.add(转)
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而 ...
- tensorflow中共享变量 tf.get_variable 和命名空间 tf.variable_scope
tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- tensorflow 基本函数(1.tf.split, 2.tf.concat,3.tf.squeeze, 4.tf.less_equal, 5.tf.where, 6.tf.gather, 7.tf.cast, 8.tf.expand_dims, 9.tf.argmax, 10.tf.reshape, 11.tf.stack, 12tf.less, 13.tf.boolean_mask
1. tf.split(3, group, input) # 拆分函数 3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow ...
- 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value
In order to train our model, we need to define what it means for the model to be good. Well, actuall ...
随机推荐
- Creator填色游戏的一种实现方案
前言 先上一个辛苦弄出来的gif效果.写公众号时间不长,很多技巧还在慢慢跟小伙伴学习.可关注公众号,回复"绘图"或者"填色"都可获得demo的git地址.请使用 ...
- day14总结
装饰器 """1.什么是装饰器 器指的是工具/功能 装饰指的是为被装饰对象添加额外的功能 大白话:定义装饰器就是定义了一个函数,该函数就是用来为其他函数添加额外的功能的 ...
- eShopOnContainers 知多少[11]:服务间通信之gRPC
引言 最近翻看最新3.0 eShopOncontainers源码,发现其在架构选型中补充了 gRPC 进行服务间通信.那就索性也写一篇,作为系列的补充. gRPC 老规矩,先来理一下gRPC的基本概念 ...
- 主题博客添加 h5 贴边音乐插件
前言: 前几日,在逛微博的时候,发现微博主页的左下角有一个贴边的音乐小插件,我顿时就想在自己博客上也弄一个玩玩.当时就想把微博那个移植过来,首先我用谷歌浏览器F12 查看页面源码,和检查元素代码,发现 ...
- 数据分析,numpy pandas常用api记录
1. np.percentile(train_list["wnum1"], [10, 90, 95, 99]) 计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列 2 ...
- oracle数据库备份还原命令
oracle数据库备份命令exp 用户名/密码@orcl file=d:\xxxxxx.dmp owner=用户名 oracle数据库还原命令sqlplus conn / as sysdba drop ...
- NVIDIA GPU Volta架构简述
NVIDIA GPU Volta架构简述 本文摘抄自英伟达Volta架构官方白皮书:https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Ce ...
- 切换npm源的几种方法
我们在使用官方提供的npm源安装各种依赖包的时候,下载速度会很慢,通常需要更换npm源. 我们可以在终端中输入命令 npm config list 来查看 npm 源地址,默认地址为 metrics- ...
- es6 Proxy简单使用
es6的Proxy是什么? 可以理解为,是在访问对象前的一层拦截.只要访问的该对象,就要通过这个一层拦截.这一层的拦截,可以进行数据的过滤和更改 比如下面这个 var p = new Proxy({} ...
- 看了这篇你就会手写RPC框架了
一.学习本文你能学到什么? RPC的概念及运作流程 RPC协议及RPC框架的概念 Netty的基本使用 Java序列化及反序列化技术 Zookeeper的基本使用(注册中心) 自定义注解实现特殊业务逻 ...