POJ 1039 Pipe(直线和线段相交判断,求交点)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 8280 | Accepted: 2483 |
Description

Each pipe component consists of many straight pipes connected tightly together. For the programming purposes, the company developed the description of each component as a sequence of points [x1; y1], [x2; y2], . . ., [xn; yn], where x1 < x2 < . . . xn . These are the upper points of the pipe contour. The bottom points of the pipe contour consist of points with y-coordinate decreased by 1. To each upper point [xi; yi] there is a corresponding bottom point [xi; (yi)-1] (see picture above). The company wants to find, for each pipe component, the point with maximal x-coordinate that the light will reach. The light is emitted by a segment source with endpoints [x1; (y1)-1] and [x1; y1] (endpoints are emitting light too). Assume that the light is not bent at the pipe bent points and the bent points do not stop the light beam.
Input
Output
Sample Input
4
0 1
2 2
4 1
6 4
6
0 1
2 -0.6
5 -4.45
7 -5.57
12 -10.8
17 -16.55
0
Sample Output
4.67
Through all the pipe.
Source
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
//两直线相交求交点
//第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
//只有第一个值为2时,交点才有意义
pair<int,Point> operator &(const Line &b)const
{
Point res = s;
if(sgn((s-e)^(b.s-b.e)) == )
{
if(sgn((s-b.e)^(b.s-b.e)) == )
return make_pair(,res);//重合
else return make_pair(,res);//平行
}
double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x += (e.x-s.x)*t;
res.y += (e.y-s.y)*t;
return make_pair(,res);
}
};
//判断直线和线段相交
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= ;
} Point up[],down[];
int main()
{
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i < n;i++)
{
up[i].input();
down[i] = up[i];
down[i].y -= ;
}
bool flag = false;//穿过所有的标记
double ans = -10000000.0;
int k;
for(int i = ;i < n;i++)
{
for(int j = i+;j < n;j++)
{
for(k = ;k < n;k++)
if(Seg_inter_line(Line(up[i],down[j]),Line(up[k],down[k])) == false)
break;
if(k >= n)
{
flag = true;
break;
}
if(k > max(i,j))
{
if(Seg_inter_line(Line(up[i],down[j]),Line(up[k-],up[k])))
{
pair<int,Point>pr = Line(up[i],down[j])&Line(up[k-],up[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
if(Seg_inter_line(Line(up[i],down[j]),Line(down[k-],down[k])))
{
pair<int,Point>pr = Line(up[i],down[j])&Line(down[k-],down[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
} for(k = ;k < n;k++)
if(Seg_inter_line(Line(down[i],up[j]),Line(up[k],down[k])) == false)
break;
if(k >= n)
{
flag = true;
break;
}
if(k > max(i,j))
{
if(Seg_inter_line(Line(down[i],up[j]),Line(up[k-],up[k])))
{
pair<int,Point>pr = Line(down[i],up[j])&Line(up[k-],up[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
if(Seg_inter_line(Line(down[i],up[j]),Line(down[k-],down[k])))
{
pair<int,Point>pr = Line(down[i],up[j])&Line(down[k-],down[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
}
}
if(flag)break;
}
if(flag)printf("Through all the pipe.\n");
else printf("%.2lf\n",ans);
}
return ;
}
POJ 1039 Pipe(直线和线段相交判断,求交点)的更多相关文章
- POJ 1039 Pipe【经典线段与直线相交】
链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- POJ 3304 Segments[直线与线段相交]
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13514 Accepted: 4331 Descrip ...
- POJ 1408 Fishnet【枚举+线段相交+叉积求面积】
题目: http://poj.org/problem?id=1408 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1039 直线和线段相交
题意: 题意很好理解,从左边射过来的光线,最远能经过管道到右边多少距离. 分析: 光线一定经过一个上端点和一个下端点,这一点很容易想到.然后枚举上下端点即可 #include <iostream ...
- 判断直线与线段相交 POJ 3304 Segments
题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...
- poj 3304(直线与线段相交)
传送门:Segments 题意:线段在一个直线上的摄影相交 求求是否存在一条直线,使所有线段到这条直线的投影至少有一个交点 分析:可以在共同投影处作原直线的垂线,则该垂线与所有线段都相交<==& ...
- POJ - 1039 Pipe(计算几何)
http://poj.org/problem?id=1039 题意 有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入 ...
- hdu 3304(直线与线段相交)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12042 Accepted: 3808 Descrip ...
随机推荐
- CakeDC(cakephp company)Git workflow--适合于较大团队大型项目开发
CakeDC Git workflow是一个项目开发和版本发布的工作流,在这个工作流程中开发和版本发布周期是基于几个关键阶段(key phases): Development: 所有活跃的开发活动都由 ...
- POJ 1847 Tram【Floyd】
题意:给出n个站点,每个站点都有铁路通向其他站点 如果当前要走得路恰好是该站点的开关指向的铁路,则不用扳开关,否则要手动扳动开关,给出起点和终点,问最少需要扳动多少次开关 输入的第一行是n,start ...
- Js内置对象的应用
Boolean.Number.Objectfunction对象 另一种写法: var add=new Function("x","y",&q ...
- [转]FFMPEG视音频编解码零基础学习方法
在CSDN上的这一段日子,接触到了很多同行业的人,尤其是使用FFMPEG进行视音频编解码的人,有的已经是有多年经验的“大神”,有的是刚开始学习的初学者.在和大家探讨的过程中,我忽然发现了一个问题:在“ ...
- Android程序架构基本内容概述
在Android操作系统中开发的应用程序都有一个结构缜密的架构.我们今天就来对这一Android程序架构做一个详细的分析.帮助大家了解程序开发的特点,以方便将来在应用程序开中明确自己的程序架构. An ...
- Matlab---size,length和numel函数的用法
size:获取数组的行数和列数 length:数组长度(即行数或列数中的较大值) numel:元素总数. 1.size()函数 s=size(A),当只有一个输出参数时,返回一个行向量,该行向量的第一 ...
- 收缩Oracle数据文件
最近有网友提到收缩Oracle数据文件的问题,这是DBA经常碰到的一个常见问题.通常我们需要收缩相应的数据文件以减少来自磁盘空间的压力以及提高数据库的整体性能.但这并非对于所有情形都是适用的,尤其是生 ...
- android view生命周期
onFinishInflate() 当View中所有的子控件均被映射成xml后触发 onMeasure( int , int ) 确定所有子元素的大小 onLayout( boolean , in ...
- 深入浅出ghostbuster剖析NodeJS与PhantomJS的通讯机制
深入浅出ghostbuster剖析NodeJS与PhantomJS的通讯机制 蔡建良 2013-11-14 一. 让我们开始吧 通过命令行来执行 1) 进行命令窗口: cmd 2) 进入resourc ...
- bjfu1262 优先队列
比较典型的应用优先队列的题.题目是在一个长为n的数组中,依次问m个数中的最小值.那么把值和下标做成一个结构体,放进优先队列里,每次移动窗口就把该T的T掉,剩下的最小值就是答案,复杂度nlogn,轻松a ...