Pipe
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8280   Accepted: 2483

Description

The GX Light Pipeline Company started to prepare bent pipes for the new transgalactic light pipeline. During the design phase of the new pipe shape the company ran into the problem of determining how far the light can reach inside each component of the pipe. Note that the material which the pipe is made from is not transparent and not light reflecting. 

Each pipe component consists of many straight pipes connected tightly together. For the programming purposes, the company developed the description of each component as a sequence of points [x1; y1], [x2; y2], . . ., [xn; yn], where x1 < x2 < . . . xn . These are the upper points of the pipe contour. The bottom points of the pipe contour consist of points with y-coordinate decreased by 1. To each upper point [xi; yi] there is a corresponding bottom point [xi; (yi)-1] (see picture above). The company wants to find, for each pipe component, the point with maximal x-coordinate that the light will reach. The light is emitted by a segment source with endpoints [x1; (y1)-1] and [x1; y1] (endpoints are emitting light too). Assume that the light is not bent at the pipe bent points and the bent points do not stop the light beam.

Input

The input file contains several blocks each describing one pipe component. Each block starts with the number of bent points 2 <= n <= 20 on separate line. Each of the next n lines contains a pair of real values xi, yi separated by space. The last block is denoted with n = 0.

Output

The output file contains lines corresponding to blocks in input file. To each block in the input file there is one line in the output file. Each such line contains either a real value, written with precision of two decimal places, or the message Through all the pipe.. The real value is the desired maximal x-coordinate of the point where the light can reach from the source for corresponding pipe component. If this value equals to xn, then the message Through all the pipe. will appear in the output file.

Sample Input

4
0 1
2 2
4 1
6 4
6
0 1
2 -0.6
5 -4.45
7 -5.57
12 -10.8
17 -16.55
0

Sample Output

4.67
Through all the pipe.

Source

 
 
 
 
很好的题目。
意思需要先理解。
就是从前面一段过来的光线,问最远可以射到哪,只能直射。
 
 
最远的那条光线肯定过一个上端点和一个下端点。枚举两个点,然后判断,求交点。
 
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
//两直线相交求交点
//第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
//只有第一个值为2时,交点才有意义
pair<int,Point> operator &(const Line &b)const
{
Point res = s;
if(sgn((s-e)^(b.s-b.e)) == )
{
if(sgn((s-b.e)^(b.s-b.e)) == )
return make_pair(,res);//重合
else return make_pair(,res);//平行
}
double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x += (e.x-s.x)*t;
res.y += (e.y-s.y)*t;
return make_pair(,res);
}
};
//判断直线和线段相交
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= ;
} Point up[],down[];
int main()
{
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i < n;i++)
{
up[i].input();
down[i] = up[i];
down[i].y -= ;
}
bool flag = false;//穿过所有的标记
double ans = -10000000.0;
int k;
for(int i = ;i < n;i++)
{
for(int j = i+;j < n;j++)
{
for(k = ;k < n;k++)
if(Seg_inter_line(Line(up[i],down[j]),Line(up[k],down[k])) == false)
break;
if(k >= n)
{
flag = true;
break;
}
if(k > max(i,j))
{
if(Seg_inter_line(Line(up[i],down[j]),Line(up[k-],up[k])))
{
pair<int,Point>pr = Line(up[i],down[j])&Line(up[k-],up[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
if(Seg_inter_line(Line(up[i],down[j]),Line(down[k-],down[k])))
{
pair<int,Point>pr = Line(up[i],down[j])&Line(down[k-],down[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
} for(k = ;k < n;k++)
if(Seg_inter_line(Line(down[i],up[j]),Line(up[k],down[k])) == false)
break;
if(k >= n)
{
flag = true;
break;
}
if(k > max(i,j))
{
if(Seg_inter_line(Line(down[i],up[j]),Line(up[k-],up[k])))
{
pair<int,Point>pr = Line(down[i],up[j])&Line(up[k-],up[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
if(Seg_inter_line(Line(down[i],up[j]),Line(down[k-],down[k])))
{
pair<int,Point>pr = Line(down[i],up[j])&Line(down[k-],down[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
}
}
if(flag)break;
}
if(flag)printf("Through all the pipe.\n");
else printf("%.2lf\n",ans);
}
return ;
}
 
 

POJ 1039 Pipe(直线和线段相交判断,求交点)的更多相关文章

  1. POJ 1039 Pipe【经典线段与直线相交】

    链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

  3. POJ 3304 Segments[直线与线段相交]

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13514   Accepted: 4331 Descrip ...

  4. POJ 1408 Fishnet【枚举+线段相交+叉积求面积】

    题目: http://poj.org/problem?id=1408 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. POJ 1039 直线和线段相交

    题意: 题意很好理解,从左边射过来的光线,最远能经过管道到右边多少距离. 分析: 光线一定经过一个上端点和一个下端点,这一点很容易想到.然后枚举上下端点即可 #include <iostream ...

  6. 判断直线与线段相交 POJ 3304 Segments

    题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...

  7. poj 3304(直线与线段相交)

    传送门:Segments 题意:线段在一个直线上的摄影相交 求求是否存在一条直线,使所有线段到这条直线的投影至少有一个交点 分析:可以在共同投影处作原直线的垂线,则该垂线与所有线段都相交<==& ...

  8. POJ - 1039 Pipe(计算几何)

    http://poj.org/problem?id=1039 题意 有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入 ...

  9. hdu 3304(直线与线段相交)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12042   Accepted: 3808 Descrip ...

随机推荐

  1. LA 2965 Jurassic Remains

    这是我做的第一道状态压缩的题目,而且我自己居然看懂了,理解得还算透彻. 题意:给出若干个大写字母组成的字符串,然后选取尽量多的字符串使得这些字母出现偶数次. 最朴素的想法,穷举法:每个字符串只有选和不 ...

  2. (转)ios获取设备系统信息

    UIDevice *device_=[[UIDevice alloc] init]; NSLog(@"设备所有者的名称--%@",device_.name); NSLog(@&qu ...

  3. Ubuntu中文输入法的安装

    Ubuntu上的输入法主要有小小输入平台(支持拼音/二笔/五笔等),Fcitx,Ibus,Scim等.其中Scim和Ibus是输入法框架. 在Ubuntu的中文系统中自带了中文输入法,通过Ctrl+S ...

  4. 在Datatables中加入错误提示功能

    经常用Datatables的童鞋一定碰到过当采用服务端请求的时候,一旦后台出现异常,Datatables的会一直卡在那里,中间的正在处理的提示一直停留着. 为了能给用户更好的体验,需要对Datatab ...

  5. DOM对象常用对象的方法和属性

      HTML文档中的常用节点类型: 接口 nodeType 备注 Element 1 元素节点 Text 3 文本节点 Document 9 Document Comment 8 注释文本 Docum ...

  6. ASIHTTPRequest详解

    ASIHTTPRequest对CFNetwork API进行了封装,并且使用起来非常简单,用Objective-C编写,可以很好的应用在Mac OS X系统和iOS平台的应用程序中.ASIHTTPRe ...

  7. 【转】在Eclipse中使用PyDev进行Python开发

    原文网址:http://www.crifan.com/eclipse_use_pydev_develop_python/ 在折腾: [记录]使用Python的IDE:Eclipse+PyDev 的过程 ...

  8. Fidder 监控WCF

    Client端配置 <?xml version="1.0" encoding="utf-8" ?> <configuration> &l ...

  9. B-树和B+树

    B-树和B+树是一种平衡的多路查找树,它在文件系统中很有用.一颗m阶的b-树,或为空树,或满足下列特性的m叉树.1)树中每个节点至多有m棵子树2)若根结点不是叶子结点,则至少有两棵子树.3)除根之外的 ...

  10. 基于XMPP协议的手机多方多端即时通讯方案

    一.开发背景 1.国际背景 随着Internet技术的高速发展,即时通信已经成为一种广泛使用的通信方式.1996年Mirabilis公司推出了世界上第一个即时通信系统ICQ,不到10年间,即时通信(I ...