Boring Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 698    Accepted Submission(s):
346

Problem Description
Number theory is interesting, while this problem is
boring.

Here is the problem. Given an integer sequence a1,
a2, …, an, let S(i) = {j|1<=j<i, and aj
is a multiple of ai}. If S(i) is not empty, let f(i) be the maximum
integer in S(i); otherwise, f(i) = i. Now we define bi as af(i).
Similarly, let T(i) = {j|i<j<=n, and aj is a multiple of
ai}. If T(i) is not empty, let g(i) be the minimum integer in T(i);
otherwise, g(i) = i. Now we define ci as ag(i). The
boring sum of this sequence is defined as b1 * c1 +
b2 * c2 + … + bn * cn.

Given
an integer sequence, your task is to calculate its boring sum.

 
Input
The input contains multiple test cases.

Each
case consists of two lines. The first line contains an integer n
(1<=n<=100000). The second line contains n integers a1,
a2, …, an (1<= ai<=100000).

The
input is terminated by n = 0.

 
Output
Output the answer in a line.
 
Sample Input
5
1 4 2 3 9
0
 
Sample Output
136
Hint

In the sample, b1=1, c1=4, b2=4, c2=4, b3=4, c3=2, b4=3, c4=9, b5=9, c5=9, so b1 * c1 + b2 * c2 + … + b5 * c5 = 136.

 
Author
SYSU
 
Source
 
 
 /**
给出一个数列:a[i],然后
b[i]:表示在 i 前面的项,如果有a[i]的倍数(要最靠近i的),那么b[i]就等于这个数,如果没有那么b[i] = a[i];
c[i]:表示在 i 后面的项,如果有a[i]的倍数(要最靠近i的),那么c[i] 就等于这个数,如果没有那么c[i] = a[i];
**/
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<vector>
using namespace std; int a[],b[],c[];
vector<int>Q[];
int hash1[];
int main()
{
int n;
int MAX,MIN,k;
for(int i=;i<=;i++)
for(int j=i;j<=;j=j+i)
Q[i].push_back(j);
while(scanf("%d",&n)>)
{
if(n==)break;
for(int i=; i<=n; i++){
scanf("%d",&a[i]);
b[i] = c[i] = a[i];
}
memset(hash1,,sizeof(hash1));
hash1[a[]] = ;
for(int i=;i<=n;i++)
{
if(a[i]==){
b[i] = a[i-];
continue;
}
k = Q[a[i]].size();
MAX = -;
for(int j=;j<k;j++)
if(hash1[Q[a[i]][j]]!= && MAX<hash1[Q[a[i]][j]])
MAX = hash1[Q[a[i]][j]]; if(MAX == -);
else b[i] = a[MAX];
hash1[a[i]] = i;
}
memset(hash1,,sizeof(hash1));
hash1[a[n]] = n;
for(int i=n-;i>=;i--)
{
if(a[i]==) { c[i] = a[i+]; continue;}
MIN = ;
k = Q[a[i]].size();
for(int j=;j<k;j++)
if(hash1[Q[a[i]][j]]!= && MIN>hash1[Q[a[i]][j]])
MIN = hash1[Q[a[i]][j]];
if(MIN == );
else c[i] = a[MIN];
hash1[a[i]] = i;
}
__int64 sum = ;
for(int i=;i<=n;i++)
sum = sum+((__int64)b[i])*c[i];
printf("%I64d\n",sum);
}
return ;
}

hdu 4961 Boring Sum的更多相关文章

  1. hdu 4961 Boring Sum(高效)

    pid=4961" target="_blank" style="">题目链接:hdu 4961 Boring Sum 题目大意:给定ai数组; ...

  2. hdu 4961 Boring Sum(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4961 Problem Description Number theory is interesting ...

  3. hdu 4961 Boring Sum (思维 哈希 扫描)

    题目链接 题意:给你一个数组,让你生成两个新的数组,A要求每个数如果能在它的前面找个最近的一个是它倍数的数,那就变成那个数,否则是自己,C是往后找,输出交叉相乘的和 分析: 这个题这种做法是O(n*s ...

  4. HDOJ 4961 Boring Sum

    Discription Number theory is interesting, while this problem is boring. Here is the problem. Given a ...

  5. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  6. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  7. HDU 1244 Max Sum Plus Plus Plus

    虽然这道题看起来和 HDU 1024  Max Sum Plus Plus 看起来很像,可是感觉这道题比1024要简单一些 前面WA了几次,因为我开始把dp[22][maxn]写成dp[maxn][2 ...

  8. hdu 3415 Max Sum of Max-K-sub-sequence(单调队列)

    题目链接:hdu 3415 Max Sum of Max-K-sub-sequence 题意: 给你一串形成环的数,让你找一段长度不大于k的子段使得和最大. 题解: 我们先把头和尾拼起来,令前i个数的 ...

  9. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

随机推荐

  1. 点的双联通+二分图的判定(poj2942)

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 10804   Acce ...

  2. 最长上升子序列(N*log(N))hdu1025

    (HDU1025) Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  3. Eclipse安装Ruby插件应该注意的几点

    http://www.aptana.com/products/studio3/success_plugin.html Installing via Eclipse Please copy the fo ...

  4. xsd与xsl文件的区别

    请问xsd与xsl文件的区别在哪里呢?   我刚学xml,一开始用xmlspy学的,然后生成了一个xsd的文件,但在网上下的源程序是有一个xsl文件的,很不明之间有什么区别的,为什么别人的程序不用xs ...

  5. spark-submit常用参数

    yarn模式默认启动2个executor,无论你有多少的worker节点 standalone模式每个worker一个executor,无法修改executor的数量 partition是RDD中的一 ...

  6. paper 32 :svm参数优化的进展

    从今天开始,我的微信公众号“天空之窗”就暂且停止更新内容了,专心搞研究!上午从师姐那儿淘到一份关于faruto讲解的Libsvm-FarutoUltimate3.1 based on libsvm-3 ...

  7. Linux 安装 nginx注意

    ./configure --prefix=/usr/local/nginx TO ./configure --prefix=/usr/local/nginx --conf-path=/usr/loca ...

  8. css 文字换行控制

    强制不换行 white-space:nowrap 强制不换行,并显示省略号 word-wrap: normal; text-overflow: ellipsis; white-space: nowra ...

  9. IE和FF区别关于css和js

    css 1.ul标签FF中有padding值,没有margin,IE中相反 解决办法:将ul的padding和margin都设为0, js 1.IE中innerText在火狐中没有,使用textCon ...

  10. 在CentOS 6 32/64 上安装 PPTP 方式 VPN 服务

    网上有很多步骤, 讲了很多步骤,废话, 其实不如直接看代码, 而且也能直接运行,快速安装: rm -f /etc/pptpd.conf rm -f /etc/ppp arch=`uname -m` # ...