【BZOJ】【1986】【USACO 2004 Dec】/【POJ】【2373】划区灌溉
DP/单调队列优化
首先不考虑奶牛的喜欢区间,dp方程当然是比较显然的:$ f[i]=min(f[k])+1,i-2*b \leq k \leq i-2*a $ 当然这里的$i$和$k$都是偶数啦~这个应该很好理解吧……每次喷灌的都是一个偶数长度的区间嘛……
那么加上奶牛的喜欢区间的话,只需这样:当$ i>cow[j].x $时,令$ i=cow[j].y , j++$ 也就是说中间的位置全部不考虑放喷灌器。
显然我们对于每个节点的 k 是可以用单调队列维护的!嗯看到这里的同学可以先自己试着去写写看啦~
如果过了样例不要着急,来试试我这组数据:
2 16
2 4
7 8
6 12
Trick:
每个奶牛的喜欢区间是一个【开区间】!分界点是可以被不同的喷灌器灌溉的(仔细看看样例的图)
一开始英文题面嘛……看了中文没细看英文……没看到还有【不合法情况输出-1】so sad……
每个f[i]不能刚算出来就弹队尾+进队尾,因为此时下一个位置为 i+2 ,可能会把能够转移到i+2的合法状态弹出去,而f[i]是不能转移到f[i+2]的!(因为有a的限制)所以会造成f[i+2]计算错误(当然f[l]就也有可能出错了。
事实上由于我们维护的队列是一个合法状态区间,所以目前不合法的状态不应该进队,而是应该在每次更新f[i]之前让 f[i-2*a] 进队,这样可以保证队列中所有节点都为合法状态。
然而!!刚才那种做法会有漏洞!因为我们会在遇到奶牛的喜欢区间的时候跳!过!去!所以一些合法状态就会来不及进队(比如我给的数据中的f[6]……所以在遇到奶牛区间的时候要将这个区间内所有合法的状态进队(当然要维护队列单调性了……需要弹队尾)
/**************************************************************
Problem: 1986
User: Tunix
Language: C++
Result: Accepted
Time:40 ms
Memory:9092 kb
****************************************************************/ //POJ 2373
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*=sign;
}
const int N=1e6+,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/
//#define debug
struct Cow{
int x,y;
Cow(){}
bool operator < (const Cow &b)const{
return x<b.x || (x==b.x && y<b.y);
}
}cow[];
int f[N],n,l,a,b;
int q[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("2373.in","r",stdin);
// freopen("2373.out","w",stdout);
#endif
n=getint(); l=getint(); a=getint(); b=getint();
F(i,,n) cow[i].x=getint(),cow[i].y=getint();
sort(cow+,cow+n+);
#ifdef debug
F(i,,n) printf("%d %d\n",cow[i].x,cow[i].y);
cout <<endl;
#endif
int j=;
F(i,,l) f[i]=INF;
int st=,ed=;
f[]=;
q[ed++]=;
for(int i=;i<=l;i+=){
while(i>cow[j].x && j<=n){
int last=i;
i=max(i,(cow[j].y+)/*),j++;
for(int I=last;I<=i;I+=)
if (f[I-*a]!=INF){
while(st<ed && f[q[ed-]]>f[I-*a]) ed--;
q[ed++]=I-*a;
}
}
while(st<ed && q[st]<i-*b) st++;
if(f[i-*a]!=INF){
while(st<ed && f[q[ed-]]>f[i-*a]) ed--;
q[ed++]=i-*a;
}
if (st<ed && i-q[st]>=*a) f[i]=f[q[st]]+;
}
#ifdef debug
F(i,,l) printf("%d ",f[i]==INF ? - : f[i]);
cout <<endl;
#endif
printf("%d\n",f[l]==INF ? - : f[l]);
return ;
}
【BZOJ】【1986】【USACO 2004 Dec】/【POJ】【2373】划区灌溉的更多相关文章
- BZOJ 4094 USACO 2013 Dec. Optimal Milking
线段树 每个节点保存4个值,both表示左右端点都取,neither表示左右端点都不取,left表示只取左端点,right表示只取右端点. 维护的特殊姿势: $cur$的$both=max(ls.l+ ...
- BZOJ 1606 USACO 2008 Dec. 购买干草
[题意概述] 有n件物品,每件物品有体积Vi,背包容量为C,问最多可以装多少体积的物品 [题解] 显然是个无限背包嘛.. 直接做背包DP就好 注意无限背包的写法和01背包的区别 #include< ...
- BZOJ1986: [USACO2004 Dec] Dividing the Path 划区灌溉
L<=1000000的土地上用长度在2*A~2*B的线段覆盖所有点,且给定n<=1000个区间,每个区间上只允许有一条线段,求最少多少线段,无解-1. f[i]表示填前i个土地最少线段,f ...
- 【Noip模拟 20160929】划区灌溉
题目描述 约翰的奶牛们发现山脊上的草特别美味.为了维持草的生长,约翰打算安装若干喷灌器. 为简化问题,山脊可以看成一维的数轴,长为L(1≤L≤1,000,000)L(1≤L≤1,000,000),而且 ...
- [POJ 2373][BZOJ 1986] Dividing the Path
Link: POJ 2373 传送门 Solution: 一开始想错方向的一道简单$dp$,不应该啊…… 我一开始的想法是以$cows' ranges$的节点为状态来$dp$ 但明显一个灌溉的区间的两 ...
- USACO翻译:USACO 2013 DEC Silver三题
USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...
- USACO翻译:USACO 2014 DEC Silver三题
USACO 2014 DEC SILVER 一.题目概览 中文题目名称 回程 马拉松 奶牛慢跑 英文题目名称 piggyback marathon cowjog 可执行文件名 piggyback ma ...
- poj 2373 Dividing the Path
Dividing the Path Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2858 Accepted: 1064 ...
- bzoj:1675 [Usaco2005 Feb]Rigging the Bovine Election 竞选划区
Description It's election time. The farm is partitioned into a 5x5 grid of cow locations, each of wh ...
随机推荐
- Vue.js学习 Item6 -- Class 与 样式绑定
数据绑定一个常见需求是操作元素的 class 列表和它的内联样式.因为它们都是 attribute,我们可以用 v-bind 处理它们:只需要计算出表达式最终的字符串.不过,字符串拼接麻烦又易错.因此 ...
- Java实现九九乘法表的输出
九九乘法表一般为三角形,每个数分别和从1到自身的数相乘然后把结果列出来,即要用到两层循环,外层是从1到9for(i=1;i<=9;i++),内层是当前数和从1到自身相乘for(j=1;j< ...
- jsonp 调用天气API
由于Sencha Touch 2这种开发模式的特性,基本决定了它原生的数据交互行为几乎只能通过AJAX来实现. 当然了,通过调用强大的PhoneGap插件然后打包,你可以实现100%的Socket通讯 ...
- WebBrowser里网页根据文字判断来点击链接 无Name及ID时
uses ActiveX, ComObj, MSHTML; 根据连接文字点击连接- 一般情况下的连接 Procedure HTMLClinkByText(text:string;Wbr:TWebBro ...
- WIN7 shutdown 定时/倒计时 命令关机
解决方案: 一.可以通过DOS命令shutdown来解决 在 Win7 中,shutdown实现自动关机的方法如下: 开始->运行->cmd 运行"shutdown -s -t ...
- partition实现
partition的作用是把环形缓冲区中的map输出分区存储,以便分配给不同的reducer. 把内部的实现写下来,作为一个学习笔记 在map函数,调用context.write()时,会去调用分区函 ...
- 第十九章 数据访问(In .net4.5) 之 处理数据
1. 概述 本章介绍 数据库.Json和Xml.web services 三种介质上的数据操作. 2. 主要内容 2.1 数据库 ① 建立连接 .net平台中的数据连接类都继承自DbConnectio ...
- Python脚本控制的WebDriver 常用操作 <六> 打印当前页面的title及url
下面将使用WebDriver来答应浏览器页面的title和访问的地址信息 测试用例场景 测试中,访问1个页面然后判断其title是否符合预期是很常见的1个用例: 假设1个页面的title应该是'hel ...
- C基础 数据序列化简单使用和讨论
前言 C中对序列化讨论少, 因为很多传输的内容都有自己解析的轮子. 对于序列化本质是统一编码, 统一解码的方式. 本文探讨是一种简单的序列化方案. 保证不同使用端都能解析出正确结果. 在文章一开始, ...
- C 几种异常机制简单讲述
引言 这是关于C中如何使用异常机制的讨论.顺带讲一讲C中魔法函数的setjmp内部机制.通过它实现高级的异常try...catch. 允许我先扯一段面试题. 对于计算机面试题. 算法题等.觉得还是有意 ...