DP/单调队列优化


  首先不考虑奶牛的喜欢区间,dp方程当然是比较显然的:$ f[i]=min(f[k])+1,i-2*b \leq k \leq i-2*a $  当然这里的$i$和$k$都是偶数啦~这个应该很好理解吧……每次喷灌的都是一个偶数长度的区间嘛……

  那么加上奶牛的喜欢区间的话,只需这样:当$ i>cow[j].x $时,令$ i=cow[j].y , j++$ 也就是说中间的位置全部不考虑放喷灌器。

  显然我们对于每个节点的 k 是可以用单调队列维护的!嗯看到这里的同学可以先自己试着去写写看啦~

  如果过了样例不要着急,来试试我这组数据:

2 16
2 4
7 8
6 12

Trick:

  每个奶牛的喜欢区间是一个【开区间】!分界点是可以被不同的喷灌器灌溉的(仔细看看样例的图)

  一开始英文题面嘛……看了中文没细看英文……没看到还有【不合法情况输出-1】so sad……

  每个f[i]不能刚算出来就弹队尾+进队尾,因为此时下一个位置为 i+2 ,可能会把能够转移到i+2的合法状态弹出去,而f[i]是不能转移到f[i+2]的!(因为有a的限制)所以会造成f[i+2]计算错误(当然f[l]就也有可能出错了。

  事实上由于我们维护的队列是一个合法状态区间,所以目前不合法的状态不应该进队,而是应该在每次更新f[i]之前让 f[i-2*a] 进队,这样可以保证队列中所有节点都为合法状态。

  然而!!刚才那种做法会有漏洞!因为我们会在遇到奶牛的喜欢区间的时候跳!过!去!所以一些合法状态就会来不及进队(比如我给的数据中的f[6]……所以在遇到奶牛区间的时候要将这个区间内所有合法的状态进队(当然要维护队列单调性了……需要弹队尾)

 /**************************************************************
Problem: 1986
User: Tunix
Language: C++
Result: Accepted
Time:40 ms
Memory:9092 kb
****************************************************************/ //POJ 2373
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*=sign;
}
const int N=1e6+,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/
//#define debug
struct Cow{
int x,y;
Cow(){}
bool operator < (const Cow &b)const{
return x<b.x || (x==b.x && y<b.y);
}
}cow[];
int f[N],n,l,a,b;
int q[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("2373.in","r",stdin);
// freopen("2373.out","w",stdout);
#endif
n=getint(); l=getint(); a=getint(); b=getint();
F(i,,n) cow[i].x=getint(),cow[i].y=getint();
sort(cow+,cow+n+);
#ifdef debug
F(i,,n) printf("%d %d\n",cow[i].x,cow[i].y);
cout <<endl;
#endif
int j=;
F(i,,l) f[i]=INF;
int st=,ed=;
f[]=;
q[ed++]=;
for(int i=;i<=l;i+=){
while(i>cow[j].x && j<=n){
int last=i;
i=max(i,(cow[j].y+)/*),j++;
for(int I=last;I<=i;I+=)
if (f[I-*a]!=INF){
while(st<ed && f[q[ed-]]>f[I-*a]) ed--;
q[ed++]=I-*a;
}
}
while(st<ed && q[st]<i-*b) st++;
if(f[i-*a]!=INF){
while(st<ed && f[q[ed-]]>f[i-*a]) ed--;
q[ed++]=i-*a;
}
if (st<ed && i-q[st]>=*a) f[i]=f[q[st]]+;
}
#ifdef debug
F(i,,l) printf("%d ",f[i]==INF ? - : f[i]);
cout <<endl;
#endif
printf("%d\n",f[l]==INF ? - : f[l]);
return ;
}

【BZOJ】【1986】【USACO 2004 Dec】/【POJ】【2373】划区灌溉的更多相关文章

  1. BZOJ 4094 USACO 2013 Dec. Optimal Milking

    线段树 每个节点保存4个值,both表示左右端点都取,neither表示左右端点都不取,left表示只取左端点,right表示只取右端点. 维护的特殊姿势: $cur$的$both=max(ls.l+ ...

  2. BZOJ 1606 USACO 2008 Dec. 购买干草

    [题意概述] 有n件物品,每件物品有体积Vi,背包容量为C,问最多可以装多少体积的物品 [题解] 显然是个无限背包嘛.. 直接做背包DP就好 注意无限背包的写法和01背包的区别 #include< ...

  3. BZOJ1986: [USACO2004 Dec] Dividing the Path 划区灌溉

    L<=1000000的土地上用长度在2*A~2*B的线段覆盖所有点,且给定n<=1000个区间,每个区间上只允许有一条线段,求最少多少线段,无解-1. f[i]表示填前i个土地最少线段,f ...

  4. 【Noip模拟 20160929】划区灌溉

    题目描述 约翰的奶牛们发现山脊上的草特别美味.为了维持草的生长,约翰打算安装若干喷灌器. 为简化问题,山脊可以看成一维的数轴,长为L(1≤L≤1,000,000)L(1≤L≤1,000,000),而且 ...

  5. [POJ 2373][BZOJ 1986] Dividing the Path

    Link: POJ 2373 传送门 Solution: 一开始想错方向的一道简单$dp$,不应该啊…… 我一开始的想法是以$cows' ranges$的节点为状态来$dp$ 但明显一个灌溉的区间的两 ...

  6. USACO翻译:USACO 2013 DEC Silver三题

    USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...

  7. USACO翻译:USACO 2014 DEC Silver三题

    USACO 2014 DEC SILVER 一.题目概览 中文题目名称 回程 马拉松 奶牛慢跑 英文题目名称 piggyback marathon cowjog 可执行文件名 piggyback ma ...

  8. poj 2373 Dividing the Path

    Dividing the Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2858   Accepted: 1064 ...

  9. bzoj:1675 [Usaco2005 Feb]Rigging the Bovine Election 竞选划区

    Description It's election time. The farm is partitioned into a 5x5 grid of cow locations, each of wh ...

随机推荐

  1. Vue.js学习 Item6 -- Class 与 样式绑定

    数据绑定一个常见需求是操作元素的 class 列表和它的内联样式.因为它们都是 attribute,我们可以用 v-bind 处理它们:只需要计算出表达式最终的字符串.不过,字符串拼接麻烦又易错.因此 ...

  2. Java实现九九乘法表的输出

    九九乘法表一般为三角形,每个数分别和从1到自身的数相乘然后把结果列出来,即要用到两层循环,外层是从1到9for(i=1;i<=9;i++),内层是当前数和从1到自身相乘for(j=1;j< ...

  3. jsonp 调用天气API

    由于Sencha Touch 2这种开发模式的特性,基本决定了它原生的数据交互行为几乎只能通过AJAX来实现. 当然了,通过调用强大的PhoneGap插件然后打包,你可以实现100%的Socket通讯 ...

  4. WebBrowser里网页根据文字判断来点击链接 无Name及ID时

    uses ActiveX, ComObj, MSHTML; 根据连接文字点击连接- 一般情况下的连接 Procedure HTMLClinkByText(text:string;Wbr:TWebBro ...

  5. WIN7 shutdown 定时/倒计时 命令关机

    解决方案: 一.可以通过DOS命令shutdown来解决 在 Win7 中,shutdown实现自动关机的方法如下: 开始->运行->cmd 运行"shutdown -s -t ...

  6. partition实现

    partition的作用是把环形缓冲区中的map输出分区存储,以便分配给不同的reducer. 把内部的实现写下来,作为一个学习笔记 在map函数,调用context.write()时,会去调用分区函 ...

  7. 第十九章 数据访问(In .net4.5) 之 处理数据

    1. 概述 本章介绍 数据库.Json和Xml.web services 三种介质上的数据操作. 2. 主要内容 2.1 数据库 ① 建立连接 .net平台中的数据连接类都继承自DbConnectio ...

  8. Python脚本控制的WebDriver 常用操作 <六> 打印当前页面的title及url

    下面将使用WebDriver来答应浏览器页面的title和访问的地址信息 测试用例场景 测试中,访问1个页面然后判断其title是否符合预期是很常见的1个用例: 假设1个页面的title应该是'hel ...

  9. C基础 数据序列化简单使用和讨论

     前言 C中对序列化讨论少, 因为很多传输的内容都有自己解析的轮子. 对于序列化本质是统一编码, 统一解码的方式. 本文探讨是一种简单的序列化方案. 保证不同使用端都能解析出正确结果. 在文章一开始, ...

  10. C 几种异常机制简单讲述

    引言 这是关于C中如何使用异常机制的讨论.顺带讲一讲C中魔法函数的setjmp内部机制.通过它实现高级的异常try...catch. 允许我先扯一段面试题. 对于计算机面试题. 算法题等.觉得还是有意 ...