Codeforces 1340B Nastya and Scoreboard(dp,贪心)
题目大意
给你\(n\)串数字,\(1\)代表该位置是亮的,\(0\)代表是灭的。你必须修改\(k\)个数字,使某些\(0\)变为\(1\)。注意,只能把原来的\(0\)改成\(1\)。
分析
由于每串数字上的\(1\)是不能修改的,所以每串数字并不一定能完整的表示\(0-9\)之内的所有数,所有需要先对每串数字做一下预处理,计算出能改为哪些数字和修改的代价。然后第一步,我们需要判断是否可以构成\(n\)个完整数字。这个直接来判断似乎不太好做。但是可以转换一下,变成能否只消耗\(k\)构成\(n\)个完整数字。这个类似于背包问题,问能否用\(n\)个数构成\(k\)。
状态转移方式为:若第\(i\)步可以到达容量\(j\),那么第\(i+1\)步就可以到达\(j+cost[i+1]\)。
我们将上面稍微变形,不难得出:\(dp[i][j] |= dp[i-1][j-cost[i][t]],0\leq t\leq 9\)。
所以只要判断\(dp[n][k]\)是否为\(true\)就能知道能否只消耗\(k\)显示\(n\)个完整数字了。但是这还不够,答案还需要输出最大的可能结果。我们通过上面的\(dp\)已经获得了一个状态转移的图,红色终点代表错误的终点,黑色终点代表正确的终点画出来(只是部分)大概是这样子的(这里只有\(end1\)是正确的,其他的要么是容量不为\(k\)(\(end2\)),要么是选的个数不够(\(end3\))):

我们的\(dp\)数组里存储了从起始点到终点的所有路径,可以看出,只要从终点向起点方向走,一定能走到起点,每次消耗为\(cost[i][t]\)。但是题目要求我们输出答案最大,答案最大的话就要要求大的数字靠前,所以倒着从最后一个数开始贪心肯定是不行的,我们需要正着贪心。那么我们就只能倒着\(dp\),这样我们就得到一个从最后一个数到第一个数的状态转移图。这时候我们只需要从第一个数开始贪心的每步选择能够到达的,代表数字最大的路径就行了。这样的话第一步的状态转移方程就变成了\(dp[i][j] |= dp[i+1][j-cost[i][k]],0\leq t\leq 9\)。
具体实现
第一步
先预处理,求每串数变成每个数字的消耗,显示不了的数字消耗就是\(-1\),存入\(cost\)数组中。
char nums[][10] = {"1110111","0010010","1011101","1011011","0111010","1101011","1101111","1010010","1111111","1111011"};
char str[maxn][10];
void solve(int pos) {
for (int i = 9; i>=0; --i) {
int cnt = 0;
for (int j = 0; j<7; ++j) {
if (str[pos][j]=='1'&&nums[i][j]=='0') {
cnt = -1;
break;
}
if (str[pos][j]=='0'&&nums[i][j]=='1') ++cnt;
}
cost[pos][i] = cnt;
}
}
第二步
根据\(dp[i][j] |= dp[i+1][j-cost[i][k]],0\leq t\leq 9\)倒着得到\(dp\)数组的值。
dp[n+1][0] = true;
for (int i = n; i>=1; --i)
for (int k = 9; k>=0; --k)
if (~cost[i][k])
for (int j = m; j>=cost[i][k]; --j)
dp[i][j] |= dp[i+1][j-cost[i][k]];
if (!dp[1][m]) {
cout << -1 << endl;
return 0;
}
第三步
正着贪心得到最大可能的数字。
for (int i = 1; i<=n; ++i)
for (int j = 9; j>=0; --j)
if (~cost[i][j] && m>=cost[i][j] && dp[i+1][m-cost[i][j]]) {
cout << j;
m -= cost[i][j];
break;
}
完整代码
const int maxn = 2e3+10;
char nums[][10] = {"1110111","0010010","1011101","1011011","0111010","1101011","1101111","1010010","1111111","1111011"};
char str[maxn][10];
int n, m, dp[maxn][maxn], cost[maxn][10];
void solve(int pos) {
for (int i = 9; i>=0; --i) {
int cnt = 0;
for (int j = 0; j<7; ++j) {
if (str[pos][j]=='1'&&nums[i][j]=='0') {
cnt = -1;
break;
}
if (str[pos][j]=='0'&&nums[i][j]=='1') ++cnt;
}
cost[pos][i] = cnt;
}
}
int main(void) {
cin >> n >> m;
for (int i = 1; i<=n; ++i) {
cin >> str[i];
solve(i);
}
dp[n+1][0] = true;
for (int i = n; i>=1; --i)
for (int k = 9; k>=0; --k)
if (~cost[i][k])
for (int j = m; j>=cost[i][k]; --j)
dp[i][j] |= dp[i+1][j-cost[i][k]];
if (!dp[1][m]) {
cout << -1 << endl;
return 0;
}
for (int i = 1; i<=n; ++i)
for (int j = 9; j>=0; --j)
if (~cost[i][j] && m>=cost[i][j] && dp[i+1][m-cost[i][j]]) {
cout << j;
m -= cost[i][j];
break;
}
cout << endl;
return 0;
}
Codeforces 1340B Nastya and Scoreboard(dp,贪心)的更多相关文章
- CF#637 D. Nastya and Scoreboard DP
D. Nastya and Scoreboard 题意 一块电子屏幕上有n个数字. 每个数字是通过这样7个线段显示的,现在你不小心打坏了k个线段,给出打坏之后的n个数字的显示方式,问之前的屏幕表示的最 ...
- Codeforces 1136D - Nastya Is Buying Lunch - [贪心+链表+map]
题目链接:https://codeforces.com/problemset/problem/1136/D 题意: 给出 $1 \sim n$ 的某个排列 $p$,再给出若干 $(x,y)$ 表示当序 ...
- Codeforces 1136D Nastya Is Buying Lunch (贪心)
题意: 给一个序列和一组交换序列(a,b),当且仅当a在b的前面(不允许有间隔),这两个数才能交换,问最后一个数最多能移动多少个位置. 分析: 这题是思路是十分的巧妙呀 , 用一个数组num[x] ...
- Codeforces 437C The Child and Toy(贪心)
题目连接:Codeforces 437C The Child and Toy 贪心,每条绳子都是须要割断的,那就先割断最大值相应的那部分周围的绳子. #include <iostream> ...
- Codeforces Round #546 (Div. 2) D 贪心 + 思维
https://codeforces.com/contest/1136/problem/D 贪心 + 思维 题意 你面前有一个队列,加上你有n个人(n<=3e5),有m(m<=个交换法则, ...
- 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心
题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...
- BZOJ 2021 [Usaco2010 Jan]Cheese Towers:dp + 贪心
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2021 题意: John要建一个奶酪塔,高度最大为m. 他有n种奶酪.第i种高度为h[i]( ...
- [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
随机推荐
- iOS 编译过程原理(1)
一.前言 一般可以将编程语言分为两种,编译语言和直译式语言. 像 C++.Objective-C 都是编译语言.编译语言在执行的时候,必须先通过编译器生成机器码,机器码可以直接在 CPU 上执行,所以 ...
- python中如何在一个for循环中遍历两个列表
`其实就是用zip把两个列表包装起来: for x, y in zip(list1, list2)
- python 报错:a bytes-like object is required, not 'str'
核心代码: def ipPools(numPage): headers = randomHeads() url = 'http://www.xicidaili.com/nn/' saveFsvFile ...
- E 比赛评分
时间限制 : - MS 空间限制 : - KB 评测说明 : 1s,128m 问题描述 Lj最近参加一个选秀比赛,有N个评委参加了这次评分,N是奇数.评委编号为1到N.每位评委给Lj的分数是 ...
- JAVABEAN的SCOPE属性(转载)
对于JSP 程序而言,使用JavaBeans 组件不仅可以封装许多信息,而且还可以将一些 数据处理的逻辑隐藏到JavaBeans 的内部,除此之外,我们还可以设定JavaBeans 的Scope ...
- 数据挖掘入门系列教程(八点五)之SVM介绍以及从零开始推导公式
目录 SVM介绍 线性分类 间隔 最大间隔分类器 拉格朗日乘子法(Lagrange multipliers) 拉格朗日乘子法推导 KKT条件(Karush-Kuhn-Tucker Conditions ...
- mysql搭建主从复制(一主一从,双主双从)
主从复制原理 Mysql 中有一个binlog 二进制日志,这个日志会记录下所有修改了的SQL 语句,从服务器把主服务器上的binlog二进制日志在指定的位置开始复制主服务器所进行修改的语句到从服务器 ...
- android开发对应高德地图定位服务进度一
进行android的高德地图开发首先需要进入高德地图的控制台进行注册登录.之后创建新的应用并且绑定软件得到相应的key. 这里面需要找到自己软件对应的多个SHA1.这里有发布版和调试版,以及对应的软件 ...
- 2017蓝桥杯购物单(C++B组)
原题: 标题: 购物单 小明刚刚找到工作,老板人很好,只是老板夫人很爱购物.老板忙的时候经常让小明帮忙到商场代为购物.小明很厌烦,但又不好推辞.这不,XX大促销又来了!老板夫人开出了长长的购物单,都是 ...
- python3(三)enc
# ASCII编码和Unicode编码的区别:ASCII编码是1个字节,而Unicode编码通常是2个字节. # Unicode把所有语言都统一到一套编码里,这样就不会再有乱码问题了. # 新的问题又 ...