树上倍增法求LCA
我们找的是任意两个结点的最近公共祖先, 那么我们可以考虑这么两种种情况:
1.两结点的深度相同.
2.两结点深度不同.
第一步都要转化为情况1,这种可处理的情况。
先不考虑其他, 我们思考这么一个问题: 对于两个深度不同的结点, 把深度更深的那个向其父节点迭代, 直到这个迭代结点和另一个结点深度相同, 那么这两个深度相同的结点的Lca也就是原两个结点的Lca. 因此第二种情况转化成第一种情况来求解Lca是可行的. 这里我们使用倍增法以最快的速度找到相同的深度,然后开始求LCA。求LCA使用倍增法,倍增的条件是找到相同的祖先,减小步距。
/*
* LCA在线算法(倍增法)
*/
const int MAXN = 10010;
const int DEG = 20;
struct Edge
{
int to, next;
} edge[MAXN * 2];
int head[MAXN], tot;
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
}
int fa[MAXN][DEG]; // fa[i][j]表示结点i的第2^j个祖先
int deg[MAXN]; // 深度数组
void BFS(int root)
{
queue<int>que;
deg[root] = 0;
fa[root][0] = root;
que.push(root);
while (!que.empty())
{
int tmp = que.front();
que.pop();
for (int i = 1; i < DEG; i++)
{
fa[tmp][i] = fa[fa[tmp][i - 1]][i - 1];
}
for (int i = head[tmp]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v == fa[tmp][0])
{
continue;
}
deg[v] = deg[tmp] + 1;
fa[v][0] = tmp;
que.push(v);
}
}
}
int LCA(int u, int v)
{
if (deg[u] > deg[v])
{
swap(u, v);
}
int hu = deg[u], hv = deg[v];
int tu = u, tv = v;
for (int det = hv-hu, i = 0; det ; det >>= 1, i++)
{
if (det & 1)
{
tv = fa[tv][i];
}
}
if (tu == tv)
{
return tu;
}
for (int i = DEG - 1; i >= 0; i--)
{
if (fa[tu][i] == fa[tv][i])
{
continue;
}
tu = fa[tu][i];
tv = fa[tv][i];
}
return fa[tu][0];
}
bool flag[MAXN];
int main()
{
int T;
int n;
int u, v;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
init();
memset(flag, false, sizeof(flag));
for (int i = 1; i < n; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
flag[v] = true;
}
int root;
for (int i = 1; i <= n; i++)
{
if (!flag[i])
{
root = i;
break;
}
}
BFS(root);
scanf("%d%d", &u, &v);
printf("%d\n", LCA(u, v));
}
return 0;
}
树上倍增法求LCA的更多相关文章
- 倍增法求lca(最近公共祖先)
倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...
- HDU 2586 倍增法求lca
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 倍增法求LCA
倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...
- 在线倍增法求LCA专题
1.cojs 186. [USACO Oct08] 牧场旅行 ★★ 输入文件:pwalk.in 输出文件:pwalk.out 简单对比时间限制:1 s 内存限制:128 MB n个被自 ...
- 倍增法求LCA(最近公共最先)
对于有根树T的两个结点u.v,最近公共祖先x=LCA(u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,根据定义可以看出14和15的最近公共祖先是10, 15和16的最近公共 ...
- 倍增法求lca:暗的连锁
https://loj.ac/problem/10131 #include<bits/stdc++.h> using namespace std; struct node{ int to, ...
- 倍增法求LCA代码加详细注释
#include <iostream> #include <vector> #include <algorithm> #define MAXN 100 //2^MA ...
- 最近公共祖先算法LCA笔记(树上倍增法)
Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...
- 倍增 Tarjan 求LCA
...
随机推荐
- escape和unescape知识点
decodeURI() 函数可对 encodeURI() 函数编码过的 URI 进行解码. encodeURI() 函数可把字符串作为 URI 进行编码 <script> var uri= ...
- Github 骚操作
GitHub 竟然有这些骚操作,真是涨姿势 GitHub,不用过多介绍.一个面向开源及私有软件项目的托管平台,因为只支持 git 作为唯一的版本库格式进行托管,故名 GitHub. 作为「全球最大的程 ...
- SpringMVC框架详细教程(二)
创建动态Web项目 1.创建动态Web项目: 打开Eclipse,在Package Explorer右击,创建项目,选择动态Web项目(Dynamic Web Project). 填写项目名称,并选择 ...
- 通过GSM模块发送经纬度求救信息。
本博客作为实验笔记,仅供学习交流.(转载请注明出处) 本实验通过GSM模块:SIM900a,实现向特定手机发送sos求救信号,并且利用GPS模块:微科VK2828U7G5LF,将经纬度信息同时发送到手 ...
- 一个hql 关键字member(非mysql)引起的 vo 数据 保存数据库错误
2015-03-19 14:16:29,285 ERROR [Thread-3] (DAOHelper.java:312) - updateByEntityPK:com.agileeagle.dao. ...
- AJ学IOS(30)UI之Quartz2D画图片画文字
回头看了看自己写的博客,AJ决定以后更改风格 本意是想大家看效果直接拷贝代码能用,注释齐全也方便学习,但是发现这样对新手学习特别困难 以后风格基本是–>看标题–>看目录–>看图片–& ...
- golang实现常用集合原理介绍
golang本身对常用集合的封装还是比较少的,主要有数组(切片).双向链表.堆等.在工作中可能用到其他常用的集合,于是我自己对常用的集合进行了封装,并对原理做了简单介绍,代码库地址:https://g ...
- C语言二维数组超细讲解
用一维数组处理二维表格,实际是可行的,但是会很复杂,特别是遇到二维表格的输入.处理和输出. 在你绞尽脑汁的时候,二维数组(一维数组的大哥)像电视剧里救美的英雄一样显现在你的面前,初识数组的朋友们还等什 ...
- 微服务统计,分析,图表,监控, 分布式追踪一体化的 HttpReports 在 .Net Core 的应用
前言介绍 HttpReports 是针对.Net Core 开发的轻量级APM系统,基于MIT开源协议, 使用HttpReports可以快速搭建.Net Core环境下统计,分析,图表,监控,分布式追 ...
- python的历史和下载python解释器
一.python的诞生 1.Python的创始人为Guido van Rossum.1989年圣诞节期间,在阿姆斯特丹,Guido为了打发圣诞节的无趣,决心开发一个新的脚本解释程序,创造了一种C和sh ...