Educational Codeforces Round 13 D. Iterated Linear Function 逆元+公式+费马小定理
1 second
256 megabytes
standard input
standard output
Consider a linear function f(x) = Ax + B. Let's define g(0)(x) = x and g(n)(x) = f(g(n - 1)(x))for n > 0. For the given integer values A, B, n and x find the value of g(n)(x) modulo 109 + 7.
The only line contains four integers A, B, n and x (1 ≤ A, B, x ≤ 109, 1 ≤ n ≤ 1018) — the parameters from the problem statement.
Note that the given value n can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Print the only integer s — the value g(n)(x) modulo 109 + 7.
3 4 1 1
7
3 4 2 1
25
3 4 3 1
79
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a,b) memset(a,b,sizeof(a))
#define SC scanf
#define PF printf
#define CT continue
typedef long long ll;
typedef unsigned long long ULL;
const int mod = ;
const double eps = 1e-;
const int inf = 0x3f3f3f3f;
const int N=*1e5+; ll quick(ll a,ll n)
{
ll res=;
while(n){
if(n&) res=(res*a)%mod;
a=(a*a)%mod;
n>>=;
}
return res;
} ll yuan(ll n)
{
return quick(n,mod-);
} int main()
{
ll a,b,n,x;
while(~SC("%lld%lld%lld%lld",&a,&b,&n,&x)){
ll ans=;
ans+=quick(a,n)*x%mod;
ans+=b*(quick(a,n)-)%mod*yuan(a-)%mod;
PF("%lld\n",ans);
}
return ;
}
逆元求法:利用费马小定理
http://blog.csdn.net/qq_21057881/article/details/51758437
Educational Codeforces Round 13 D. Iterated Linear Function 逆元+公式+费马小定理的更多相关文章
- Educational Codeforces Round 13 D. Iterated Linear Function 水题
D. Iterated Linear Function 题目连接: http://www.codeforces.com/contest/678/problem/D Description Consid ...
- Educational Codeforces Round 13——D. Iterated Linear Function(矩阵快速幂或普通快速幂水题)
D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input ...
- Educational Codeforces Round 13 D. Iterated Linear Function (矩阵快速幂)
题目链接:http://codeforces.com/problemset/problem/678/D 简单的矩阵快速幂模版题 矩阵是这样的: #include <bits/stdc++.h&g ...
- Educational Codeforces Round 13 D:Iterated Linear Function(数论)
http://codeforces.com/contest/678/problem/D D. Iterated Linear Function Consider a linear function f ...
- CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)
C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- codeforces div2_604 E. Beautiful Mirrors(期望+费马小定理)
题目链接:https://codeforces.com/contest/1265/problem/E 题意:有n面镜子,你现从第一面镜子开始询问,每次问镜子"今天我是否美丽",每天 ...
- Educational Codeforces Round 13 A、B、C、D
A. Johny Likes Numbers time limit per test 0.5 seconds memory limit per test 256 megabytes input sta ...
- Educational Codeforces Round 13 E. Another Sith Tournament 状压dp
E. Another Sith Tournament 题目连接: http://www.codeforces.com/contest/678/problem/E Description The rul ...
- Educational Codeforces Round 13 C. Joty and Chocolate 水题
C. Joty and Chocolate 题目连接: http://www.codeforces.com/contest/678/problem/C Description Little Joty ...
随机推荐
- 剑指offer12:求解double类型的浮点数base和int类型的整数exponent的次方。 保证base和exponent不同时为0
1. 题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方.保证base和exponent不同时为0. 2. 思路和方法 分析: 由于 ...
- 使用JavaScript随机生成数字混合字母的验证码
<script> // 封装一个随机生成数字的函数 function random(a, b) { var n = Math.round(Math.random() * (a - b) ...
- gcc命令-更新中....
下载安装MinGW 1.编译c 使用gcc xx.c命令,将文件编译为a.exe.或使用gcc xx.c -o xx.exe命令,将文件编译为xx.exe 2.编译c++ 使用g++ xx.cpp命令 ...
- 【AC自动机】最短母串
[题目链接] https://loj.ac/problem/10061 [题意] 给定 n 个字符串 S1-Sn,要求找到一个最短的字符串 T,使得这 n 个字符串都是 T 的子串. [题解] 类似于 ...
- 基于C#实现与新大陆扫码枪通信
随着工业互联的发展,扫码枪在很多场合都有所应用,超市.商场以及一些智能工厂.今天主要讲如何通过C#实现与新大陆扫码枪(OY10)进行通信,对于扫码枪的配置,这里就不多说了,结合说明书就可以实现.这里值 ...
- gperftools源码分析和项目应用 - CPU Profiler
gperftools源码分析和项目应用 - CPU Profiler 原文:https://blog.csdn.net/yubo112002/article/details/81076821 原文链接 ...
- 判断ubuntu是32位还是64位
在终端输入 sudo uname -m 显示 如果显示i686,你安装了32位操作系统 如果显示 x86_64,你安装了64位操作系统 更多: sudo uname -s 显示内核名字s sudo u ...
- 10 TCP限流技术
TCP限流是因为让接收方充分接受完消息,保证数据安全,不会丢失 一.窗口机制介绍 发送端和接收端都拥有一个窗口,当发送端发送数据时,落进窗口的数据被发送,当接受端接受数据时,落进接收端窗口的数据将会被 ...
- Spring7大模块
Spring 框架是一个分层架构,由 7 个定义良好的模块组成.Spring 模块构建在核心容器之上,核心容器定义了创建.配置和管理 bean 的方式,组成 Spring 框架的每个模块(或组件)都可 ...
- mysql 获取表字段说明SQL
SELECTTABLE_NAME as '表名', column_name AS '列名', data_type AS '数据类型', character_maximum_length AS '字符长 ...