题目描述

有一个M * N的棋盘,有的格子是障碍。现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵。我们称这些士兵占领了整个棋盘当满足第i行至少放置了Li个士兵, 第j列至少放置了Cj个士兵。现在你的任务是要求使用最少个数的士兵来占领整个棋盘。

输入输出格式

输入格式:

第一行两个数M, N, K分别表示棋盘的行数,列数以及士兵的个数。 第二行有M个数表示Li。 第三行有N个数表示Ci。 接下来有K行,每行两个数X, Y表示(X, Y)这个格子是障碍。

输出格式:

输出一个数表示最少需要使用的士兵个数。如果无论放置多少个士兵都没有办法占领整个棋盘,输出”JIONG!” (不含引号)

输入输出样例

输入样例#1: 复制

4 4 4
1 1 1 1
0 1 0 3
1 4
2 2
3 3
4 3
输出样例#1: 复制

4

说明

M, N <= 100, 0 <= K <= M * N Local

 题解

  据说正解是上下界网络流?还可以跑费用流?然而最大流也可以?

  这里用的是最大流的做法

  我们可以先在所有能摆的地方都摆上棋子,然后看一看最多能拿走多少棋子

  给每行每列分别建一个点,如果$(x,y)$不是障碍格,就把$x$对应的点向$y$对应的点连边,容量为$1$表示这个点可以被删一次

  然后从源点向所有行连边,容量为这一行最多能删的士兵数(总共格子数-障碍格子数-必须格子数)

  从所有列向汇点连边,容量为这一列最多能删的士兵数(同上)

  这样,可以发现不管怎么删都不会超出限制条件。那么要删掉最多士兵,只要跑一个最大流就可以了

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int head[N],Next[M],ver[M],edge[M],tot=;
int dep[N],cur[N],l[N],c[N],ll[N],cc[N],vis[N][N],n,m,k,s,t,ans;
queue<int> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=;
}
bool bfs(){
memset(dep,-,sizeof(dep));
while(!q.empty()) q.pop();
for(int i=s;i<=t;++i) cur[i]=head[i];
q.push(s),dep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]<&&edge[i]){
dep[v]=dep[u]+,q.push(v);
if(v==t) return true;
}
}
}
return false;
}
int dfs(int u,int limit){
if(u==t||!limit) return limit;
int flow=,f;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
if(!flow) dep[u]=-;
return flow;
}
int dinic(){
int flow=;
while(bfs()) flow+=dfs(s,inf);
return flow;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),m=read(),k=read(),ans=n*m;
s=,t=n+m+;
for(int i=;i<=n;++i) l[i]=read();
for(int i=;i<=m;++i) c[i]=read();
for(int i=;i<=k;++i){
int x=read(),y=read();vis[x][y]=;
++ll[x],++cc[y],--ans;
}
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
if(!vis[i][j]) add(i,j+n,);
for(int i=;i<=n;++i){
int p=m-ll[i]-l[i];
if(p<) return puts("JIONG!"),;
add(s,i,p);
}
for(int i=;i<=m;++i){
int p=n-cc[i]-c[i];
if(p<) return puts("JIONG!"),;
add(i+n,t,p);
}
ans-=dinic();
printf("%d\n",ans);
return ;
}

bzoj1458: 士兵占领(最大流)的更多相关文章

  1. 【BZOJ1458】士兵占领 最小流

    [BZOJ1458]士兵占领 Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占 ...

  2. 【BZOJ-1458】士兵占领 最大流

    1458: 士兵占领 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 782  Solved: 456[Submit][Status][Discuss] ...

  3. BZOJ1458 士兵占领 网络流 最大流 SAP

    原文链接http://www.cnblogs.com/zhouzhendong/p/8384699.html 题目传送门 - BZOJ1458 题意概括 有一个M * N的棋盘,有的格子是障碍.现在你 ...

  4. BZOJ1458:士兵占领(有上下界最小流)

    Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放 ...

  5. 【bzoj1458】士兵占领(最大流||有源汇最大流)

    转载 http://hzwer.com/2963.html Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里 ...

  6. bzoj 1458: 士兵占领 -- 最大流

    1458: 士兵占领 Time Limit: 10 Sec  Memory Limit: 64 MB Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵 ...

  7. P4311 士兵占领[最大流]

    题目地址 有一个$M * N$的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放置了$L_ ...

  8. 【BZOJ1458】士兵占领 最大流的模板题

    我们只要把他们可以有的限制用流量限制,再用两者关系限制一下就可以开心的跑了. #include <cstdio> #include <cstring> #include < ...

  9. bzoj1458 士兵占领

    费用流,连下面几类边 1.s->s',流量为n*m,费用为0,表示最多可放置n*m个士兵 2.s'->行 (1)流量为a[i],费用为-n*m,表示必须在这一行放置a[i]个士兵. (2) ...

随机推荐

  1. 《C和指针》读书笔记

    1. 三字母词 三字母词即用三个字符合起来表示另一个字符,它可以使C环境在某些缺少一些必需字符的字符集上实现. ??( [ ??< { ??= # ??) ] ??> } ??/ \ ?? ...

  2. 究竟什么是Java异常?

    第四阶段 IO 异常处理 没有完美的程序,所以我们需要不断地完善,考虑各种可能性,我们要将除了自己以外的任何用户或者操作者都当成傻子来考虑问题 在我们开发过程中 我们运行时常常会遇到 这样java.l ...

  3. 什么是Java内部类?

    如果大家想了解更多的知识和技术,大家可以 搜索我的公众号:理想二旬不止 (尾部有二维码)或者访问我的 个人技术博客 www.ideal-20.cn 这样阅读起来会更加舒适一些 非常高兴与大家交流,学习 ...

  4. 使用window.open 实现弹框和居中对齐

    // 打开页面方法 window.open(url, '_blank', centerStyle('600', '400')+',toolbar=no,menubar=no,resizeable=no ...

  5. Django 实现登录后跳转

    说明 实现网页登录后跳转应该分为两类:即登录成功后跳转和登录失败再次登录成功后跳转.参考网上内容,基本都只实现了第一类.而没有实现第二类. 实现 为了能让登录失败后再次登录成功后还能实现跳转.我这里采 ...

  6. centos7 虚拟机 A start job is running for /etc/rc.d/rc.local Comp。。。

    一直卡这F5查看日志,最后一行出现A start job is running for /etc/rc.d/rc.local Comp... 原因是rc.local权限设错了解决方法:1.进入单用户模 ...

  7. DP_Milking Time

    Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that sh ...

  8. Python 【Debug排除程序故障】

    debug #排除程序故障 print()函数常和#号注释结合在一起用来debug 多行注释有两种快捷操作:1.在需要注释的多行代码块前后加一组三引号''' 2.选中代码后使用快捷键操作:Window ...

  9. Python3 + selenium + Chrome浏览器(webdriver.Chrome()报错)

    Python3 + selenium + Chrome浏览器 Error: selenium.common.exceptions.WebDriverException: Message: 'chrom ...

  10. python — 生成器、推导式、递归

    目录 1 生成器(函数的变异) 2 推导式 3 递归 1 生成器(函数的变异) 判断一个函数是否是生成器函数:只需看函数内部是否有yield # 生成器函数(内部是否包含yield) def func ...