Kmeans聚类(lena图)
lena512.raw 下载地址:https://files.cnblogs.com/files/jzcbest1016/lena512_20171219131444306.rar
.raw文件可以用photoshop打开
#include<stdio.h>
#include<math.h>
#include <stdlib.h>
#define ROW 512
#define COL 512
#define K 8
#define N 512*512
typedef unsigned char BYTE;
int center[N];
BYTE origin[N];
BYTE output[N];
int mean[K];
double cal_psnr(BYTE input[N],BYTE output[N])
{
int i, j;
double PSNR = 0, MSE = 0, MAXI = 255;
for (i=0;i<N;i++)
MSE += (input[i] - output[i]) * (input[i] - output[i]);
MSE = MSE/(ROW*COL);
printf("MSE: %f\n", MSE);
PSNR = 20*log10(MAXI) - 10*log10(MSE);
return PSNR;
}
//计算距离函数,欧式距离
double getdistance(int i,int j)
{
int d;
d = abs(i-j);
return d;
}
//聚类函数
void cluster()
{
for (int i = 0; i < N; i++)
{
double min = 9999.0;
for (int j = 0; j < K; j++)
{
//printf("%d\n",origin[i]);
if(getdistance(origin[i], mean[j])<min)
{
min = getdistance(origin[i], mean[j]);
center[i] = j;
}
}
} }
//聚类后误差计算函数
double gete()
{
double cnt=0, sum=0;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < K; j++)
{
if (center[i] == j)
{
cnt = getdistance(origin[i], mean[j]);
}
}
sum += cnt;
}
return sum;
} //重新计算聚类中心
void getmean(int center[N])
{
double sum;
int count;
for (int i = 0; i < K; i++)
{
sum=0;
count = 0;
for (int j = 0; j < N; j++)
{
if (center[j] == i)
{
sum+= origin[j];
count++;
}
}
mean[i] = sum / count;
}
} int main()
{
FILE *f = NULL;
f = fopen("D:\lena512.raw","rb");
fread(origin,sizeof(BYTE),ROW*COL,f);
printf("has already read\n");
mean[0] = 4;
mean[1] = 50;
mean[2] = 98;
mean[3] = 250;
mean[4] = 23;
mean[5] = 128;
mean[6] = 78;
mean[7] = 80;
int number = 0;
double temp1, temp2;
//第一次聚类
cluster();
number++;//number统计进行了几次聚类
//对第一次聚类的结果进行误差平方和的计算
temp1 = gete();
printf("the error1 is:%f\n", temp1);
//针对第一次聚类的结果,重新计算聚类中心
getmean(center);
//第二次聚类
cluster();
number++;
temp2 = gete();
printf("the error2 is:%f\n", temp2); //迭代循环,直到两次迭代误差的差值在一定阈值范围内,则迭代停止
while (fabs(temp1 - temp2) > 0.5)
{
temp1 = temp2;
getmean(center);
cluster();
temp2 = gete();
number++;
//printf("the error%d is:%f\n", number,temp2);
}
for (int i = 0;i<N;i++)
output[i] = mean[center[i]];
printf("PSNR: %lf\n",cal_psnr(origin,output));
printf("the total number of cluster is:%d\n", number); return 0;
}
PNSR,峰值信噪比,是用来衡量图片质量的。
Kmeans聚类(lena图)的更多相关文章
- kmeans聚类中的坑 基于R shiny 可交互的展示
龙君蛋君 2015年5月24日 1.背景介绍 最近公司在用R 建模,老板要求用shiny 展示结果,建模的过程中用到诸如kmean聚类,时间序列分析等方法.由于之前看过一篇讨论kmenas聚类针对某一 ...
- 用scikit-learn学习K-Means聚类
在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类.重点讲述如何选择合适的k值. 1. K-Means类概述 在sc ...
- K-Means聚类算法原理
K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体 ...
- Kmeans聚类算法原理与实现
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...
- 转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...
- K-means聚类的Python实现
生物信息学原理作业第五弹:K-means聚类的实现. 转载请保留出处! K-means聚类的Python实现 原理参考:K-means聚类(上) 数据是老师给的,二维,2 * 3800的数据.plot ...
- 一步步教你轻松学K-means聚类算法
一步步教你轻松学K-means聚类算法(白宁超 2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...
- k-means+python︱scikit-learn中的KMeans聚类实现( + MiniBatchKMeans)
来源:, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, ...
- 4.无监督学习--K-means聚类
K-means方法及其应用 1.K-means聚类算法简介: k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低.主要处理过程包括: 1.随机选择k个点作为 ...
- matlab练习程序(k-means聚类)
聚类算法,不是分类算法. 分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类. 聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类. 这里的k-means聚类,是 ...
随机推荐
- Inline Hook 钩子编写技巧
Hook 技术通常被称为钩子技术,Hook技术是Windows系统用于替代中断机制的具体实现,钩子的含义就是在程序还没有调用系统函数之前,钩子捕获调用消息并获得控制权,在执行系统调用之前执行自身程序, ...
- 怎样检测浏览器是否安装了某个插件, 比如flash
首先, 我们可以获取浏览器安装的所有在插件: navigator.plugins 它会返回一个类似数组的对象, 包含所有已安装插件的具体信息. navigator.plugins; 然后我们可以通过正 ...
- 3_PHP表达式_4_PHP运算符
以下为学习孔祥盛主编的<PHP编程基础与实例教程>(第二版)所做的笔记. 3.4.1 算术运算符 <?php $num1 = -10; $num2 = -4; $num3 = $nu ...
- Mongo常用查询语法
一.查询 find方法 db.collection_name.find(); 查询所有的结果: select * from users; db.users.find(); 指定返回那些列(键): se ...
- vue动态绘制四分之三圆环
参照网上的一个案例“参照的为绘制的是一个动态的圆环”,现在我的需求是改编成四分之三的圆环实现效果: 样式展示 canvas绘图基本操作设置就可以参考源代码链接:原文:https://blog.csdn ...
- css 垂直方向 margin 边距 重合
1:控制两个相邻边盒子之间的距离,在A或者B盒子上用margin控制,就可以控制距离了. 2:父子级之间的元素,常规文档流中,只要垂直外边距直接接触就会发生合并.比如在写header标签时,想移动he ...
- switch语句中 参数的类型
switch可作用于char byte short int switch可作用于char byte short int对应的包装类 switch不可作用于long double float boole ...
- Android NDK 学习之调用Java函数
本博客主要是在Ubuntu 下开发,且默认你已经安装了Eclipse,Android SDK, Android NDK, CDT插件. 在Eclipse中添加配置NDK,路径如下Eclipse-> ...
- iOS开发微信支付的介绍与实现
1.前期准备 1) 到微信开放平台注册账号 需要登录邮箱验证 填写您的商户信息 2) 进入管理中心 --- 移动应用 --- 创建移动应用 --- 根据页面完善应用资料 3) 审核过后,通过应用详情页 ...
- nginx 之高级模块
secure_link_module 模块 作用: 制定并允许检查请求的链接的真实性以及保护资源免遭未经授权的访问 限制链接生效周期 配置语法 Syntax:secure_link expressio ...