在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示。经过艰苦的破译,小可可发现,这些图标表示一个数以及这个数与密码的关系。假设这个数是n,密码为x,那么可以得到如下表述: 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1。 小可可知道满足上述条件的x可能不止一个,所以一定要把所有满足条件的x计算出来,密码肯定就在其中。计算的过程是很艰苦的,你能否编写一个程序来帮助小可可呢?(题中x,n均为正整数)Input输入文件只有一行,且只有一个数字n(1<=n<=2,000,000,000)。Output你的程序需要找到所有满足前面所描述条件的x,如果不存在这样的x,你的程序只需输出一行“None”(引号不输出),否则请按照从小到大的顺序输出这些x,每行一个数。Sample Input

12

Sample Output

1
5
7
11

Hint

题解:这道题记得当时是思考了十分长时间的。

转化题意就是下面式子

(x+1)(x-1)=k*n

x+1=k1n1 x-1=k2n2   k1k2=k n1n2=n

那么我们枚举n的大于根号n的因子n1,然后枚举一个k1,之后把k1n1分别作为x+1和x-1来求解,看一看求出的另一个是否是n/n1的倍数,注意用set去重。

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<set>
using namespace std; int n,ys[],cnt;
set<int> ans; int main()
{
scanf("%d",&n);
for (int i=;i*i<=n;i++)
if (n%i==) ys[++cnt]=n/i;
for (;cnt>=;cnt--)
{
long long x=ys[cnt];
while (x<=n)
{
if ((x-)%(n/ys[cnt])==) ans.insert((x-)%n);
if ((x+)%(n/ys[cnt])==) ans.insert((x+)%n);
x+=ys[cnt];
}
}
if (ans.empty()) printf("None\n");
else
{
set<int>::iterator it;
for (it=ans.begin();it!=ans.end();it++)
printf("%d\n",*it);
}
}

【bzoj1406】 AHOI2007密码箱 数论的更多相关文章

  1. BZOJ1406 [AHOI2007]密码箱 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1406 题意概括 求所有数x,满足 x<n 且 x2≡1 (mod  n). n<=2 ...

  2. BZOJ 1406: [AHOI2007]密码箱( 数论 )

    (x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...

  3. 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)

    传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod&ThinSpace;&ThinSpace;nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...

  4. [BZOJ1406][AHOI2007]密码箱(数论)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1406 分析: (x+1)(x-1)是n的倍数 于是可以把n分解成n=ab,则a为(x+ ...

  5. bzoj1406: [AHOI2007]密码箱

    数学. x^2 % n = 1 则 (x+1)(x-1) = kn. 设 x+1 = k1*n1, x-1=k2*n2. 则 k1*k2=k , n1*n2=n. 算出每个大于sqrt(n)的约数,然 ...

  6. BZOJ 1406: [AHOI2007]密码箱

    二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...

  7. 【BZOJ-1406】密码箱 约数 + 乱搞 + set?

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1143  Solved: 677[Submit][Status][ ...

  8. bzoj 1406: [AHOI2007]密码箱 二次剩餘

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 701  Solved: 396[Submit][Status] D ...

  9. 1406: [AHOI2007]密码箱

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1591  Solved: 944[Submit][Status][ ...

随机推荐

  1. CMDB数据库设计

    title: CMDB 数据库设计 tags: Django --- CMDB数据库设计 具体的资产 服务器表和网卡.内存.硬盘是一对多的关系,一个服务器可以有多个网卡.多个内存.多个硬盘 hostn ...

  2. 树莓派 - 修改pi账号密码,开启root账号

    1.修改PI账号的密码 password pi 2.开启root账号 树莓派使用的Linux是debian系统,所以树莓派启用root和debian是相同的. debian里root账户默认没有密码, ...

  3. 11.使用while和for循环分别打印字符串s=’asdfer’中每个元素

    1).for循环 s = 'asdfer' for i in s: print(i) 2).while循环 s = 'asdfer' while 1: print(s[index]) index += ...

  4. Bootstrap标签页(Tab)插件

    标签页(Tab)在Bootstrap导航元素一章中简介过,通过结合一些data属性,您可以轻松地创建一些标签页界面.通过这个插件您可以把内容放置在标签页或胶囊式标签页甚至是下拉菜单标签页中. 用法 您 ...

  5. NOIP模拟赛 混合图

    [题目描述] Hzwer神犇最近又征服了一个国家,然后接下来却也遇见了一个难题. Hzwer的国家有n个点,m条边,而作为国王,他十分喜欢游览自己的国家.他一般会从任意一个点出发,随便找边走,沿途欣赏 ...

  6. 利用sysbench工具测试MHA

    利用sysbench工具测试MHA 1. sysbench准备数据 2. sysbench开始压测 3. master模拟意外宕机 4. mysqldb2 上观察mha状态 5. 手工failover ...

  7. k8s的高级调度方式

    默认的scheduler的调度过程:1.预选策略:从所有节点当中选择基本符合选择条件的节点.2.优选函数:在众多符合基本条件的节点中使用优选函数,计算节点各自的得分,通过比较进行排序.3.从最高得分的 ...

  8. How To Add Swap Space on Ubuntu 16.04

    Introduction One of the easiest way of increasing the responsiveness of your server and guarding aga ...

  9. SpringMVC 项目中引用其他 Module 中的方法

    1. 将要引用的Module 引入项目中 2. 在主Module中添加依赖, 3. 被引用的类必须放在 Module 中/src/下的某个package中,否则引用不到(重要)

  10. C# WPF 粘贴板记录器

    工作学习中需要搜索很多资料,有建立文档对遇到过的问题进行记录,但是一来麻烦,二来有些当时认为不重要的事情,也许一段时间后认为是重要的,需要记录的,却又一时找不到,浪费时间做重复的事情.正好借着这个机会 ...