题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503

推式子即可;

不知怎的调了那么久,应该是很清晰的。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);
db const Pi=acos(-1.0);
char S[xn],T[xn];
int n,m,lim,s[xn],t[xn],rev[xn],w[xn];
struct com{db x,y;}a[xn],b[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
void init()
{
int l=; lim=;
while(lim<=n+m)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
}
int main()
{
scanf("%s",S); n=strlen(S)-;
scanf("%s",T); m=strlen(T)-;
init();
for(int i=;i<=n;i++)s[i]=S[i]-'a'+;
int tmp=;
for(int i=;i<=m;i++)
{
t[i]=(T[m-i]=='?'?:T[m-i]-'a'+);
tmp+=t[i]*t[i]*t[i];
}
for(int i=;i<=n;i++)a[i].x=s[i]*s[i];
for(int i=;i<=m;i++)b[i].x=t[i];
fft(a,); fft(b,);
for(int i=;i<lim;i++)a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<lim;i++)w[i]=(int)(a[i].x/lim+0.5)+tmp; for(int i=;i<=lim;i++)a[i].x=a[i].y=b[i].x=b[i].y=;
for(int i=;i<=n;i++)a[i].x=*s[i];
for(int i=;i<=m;i++)b[i].x=t[i]*t[i];
fft(a,); fft(b,);
for(int i=;i<lim;i++)a[i]=a[i]*b[i];
fft(a,-);
for(int i=;i<lim;i++)w[i]-=(int)(a[i].x/lim+0.5); int num=;
for(int i=m;i<=n;i++)if(w[i]==)num++;//
printf("%d\n",num);
for(int i=m;i<=n;i++)
if(w[i]==)printf("%d\n",i-m);
return ;
}

bzoj 4503 两个串 —— FFT的更多相关文章

  1. BZOJ 4503: 两个串 [FFT]

    4503: 两个串 题意:兔子们在玩两个串的游戏.给定两个只含小写字母的字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹 ...

  2. BZOJ.4503.两个串(FFT/bitset)

    题目链接 \(Description\) 给定两个字符串S和T,求T在S中出现了几次,以及分别在哪些位置出现.T中可能有'?'字符,这个字符可以匹配任何字符. \(|S|,|T|\leq 10^5\) ...

  3. bzoj 4503 两个串——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 翻转T,就变成卷积.要想想怎么判断. 因为卷积是乘积求和,又想到相等的话相减为0,所以 ...

  4. BZOJ 4503 两个串 ——FFT

    [题目分析] 定义两个字符之间的距离为 (ai-bi)^2*ai*bi 如果能够匹配,从i到i+m的位置的和一定为0 但这和暴力没有什么区别. 发现把b字符串反过来就可以卷积用FFT了. 听说KMP+ ...

  5. bzoj 4503 两个串

    Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有“?”字符,这个字符可以匹配任何字符. Input 两行两个字 ...

  6. 【刷题】BZOJ 4503 两个串

    Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹配任何字符. I ...

  7. BZOJ 4503 两个串(FFT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4503 [题目大意] 给出S串和T串,计算T在S中出现次数,T中有通配符'?'. [题解 ...

  8. bzoj 4503 两个串 快速傅里叶变换FFT

    题目大意: 给定两个\((length \leq 10^5)\)的字符串,问第二个串在第一个串中出现了多少次.并且第二个串中含有单字符通配符. 题解: 首先我们从kmp的角度去考虑 这道题从字符串数据 ...

  9. bzoj 4503: 两个串【脑洞+FFT】

    真实脑洞题 因为通配符所以导致t串实际有指数级别个,任何字符串相关算法都没有用 考虑一个新的匹配方法:设a串(模板串)长为n,从m串的i位置开始匹配:\( \sum_{i=0}^{n-1}(a[j]- ...

随机推荐

  1. vim 树形菜单插件NERDTree 的安装

    vim 树形菜单插件的安装 NERDTree 1. mkdir ~/.vim cd ~/.vim mkdir bundle mkdir autoload 2.  curl -Sso ~/.vim/au ...

  2. poj 1651 Multiplication Puzzle【区间DP】

    题目链接:http://poj.org/problem? id=1651 题意:初使ans=0,每次消去一个值,位置在pos(pos!=1 && pos !=n) 同一时候ans+=a ...

  3. mysql报错锦集

    MySQL 启动报错 - ERROR 2002 (HY000): Can’t connect to local MySQL server through socket ‘/var/lib/mysql/ ...

  4. 如何在微信小程序中使用字体图标

    微信小程序中,在image标签里,可以在src中引用本地文件,但是background设置背景图或者使用字体图标的时候,却不能引用本地文件,只能用url地址的图片或字体,或者使用base64编码后的格 ...

  5. fabric-ca安装

    1.Go版本1.7+(具体可参考Linux安装Go语言) 2.GOPATH环境变量正确配置 export GOROOT=/usr/local/go export GOPATH=/opt/gopath ...

  6. hbase shell删除没实用

    用Xshell登陆linux主机后,在hbase shell下不能使用backspace和delete删除误输的指令,这是Xshell的配置问题: 在File->Properties->T ...

  7. hdu1028(母函数+DP)

    题目信息:求分解整数n的个数q(n);能够母函数或者DP http://acm.hdu.edu.cn/showproblem.php?pid=1028 AC代码: /***************** ...

  8. Asynchronous programming with async and await (C#)

    Asynchronous Programming with async and await (C#) | Microsoft Docs https://docs.microsoft.com/en-us ...

  9. 关于ActiveMQ接收端停止接收的方法

    现在有一个需求: 在发送端服务器出现故障后,接收端的接收方法要停下来,关于停止接收的方法,我做了下面这些事情: // 获取 ConnectionFactory ConnectionFactory co ...

  10. ckeditor html标签的class 等attribute属性都被屏蔽啦,替换成空的解决方案

    ckeditor 模块中自定义class 在ckeditor模块中,编辑内容时, 在源码中填写<div class="myclass">some content< ...