题目大意:

按照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值。

/*
dp[i][j]表示从第i个点到第j个点,划分成j-i-1个三角形的最优解,然后每次转移时,枚举长度和左边界始点,那么根据长度和左边界点就可以知道右边界点,然后枚举左边界和右边界中间的点k,dp[i][j] = min(dp[i][j], max(max(dp[i][k], dp[k][j]), Area(i, k, j)).但是有一个问题,即i,k,j三点围成的三角形是否符合要求,判断的条件即为是否存在除i,k,j三点外的一点位于三角形中,有面积法判断。
*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std;
const int N = ;
const double INF = 0x3f3f3f3f3f3f;
const double eps = 1e-; struct point {
double x, y;
void get() {
scanf("%lf%lf", &x, &y);
}
}p[N]; int n;
double dp[N][N]; double area (point a, point b, point c) {
return fabs((b.x-a.x)*(c.y-a.y) - (c.x-a.x)*(b.y-a.y))/;
} bool judge(int a,int b,int c) {//是否存在除i,k,j三点外的一点位于三角形中
double cur=area(p[a],p[b],p[c]);
for(int i=;i<n;i++) {
if(i==a||i==b||i==c)
continue;
double tmp=area(p[a],p[b],p[i])+area(p[b],p[c],p[i])+area(p[c],p[a],p[i]);
if(fabs(tmp-cur)<eps)
return false;
}
return true;
} double solve () {
for (int i = ; i < ; i++) {
for (int j = ; j < n; j++)
dp[j][(j+i)%n] = ;
} for (int i = ; i < n; i++)
dp[i][(i+)%n] = area(p[i], p[(i+)%n], p[(i+)%n]);
for(int k=;k<n;k++){
for(int i=;i<n;i++){
int t=(i+k)%n;
dp[i][t]=INF;
for(int j=(i+)%n;j!=t;j=(j+)%n){
if(judge(i,t,j))dp[i][t]=min(dp[i][t],max(max(dp[i][j],dp[j][t]),area(p[i], p[j], p[t])));
}
}
} double ans = INF;
for (int i = ; i < n; i++)
ans = min (ans, dp[i][(i+n-)%n]);
return ans;
} int main () {
freopen("Cola.in","r",stdin);
int cas;
scanf("%d", &cas);
while (cas--) {
scanf("%d", &n);
for (int i = ; i < n; i++)
p[i].get(); printf("%.1lf\n", solve());
}
return ;
}

100分

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int t,n;
const double INF = 0x3f3f3f3f3f3f;
const double eps = 1e-;
double s[][][],dp[][];
struct node{
double x,y;
}pos[];
double count(int i,int j,int k){//计算面积
double x1=pos[i].x,x2=pos[j].x,x3=pos[k].x;
double y1=pos[i].y,y2=pos[j].y,y3=pos[k].y;
double xx1=x1-x3,xx2=x2-x3;
double yy1=y1-y3,yy2=y2-y3;
double res=fabs((xx1*yy2-xx2*yy1)/2.0);
return res;
}
bool judge(int a,int b,int c){
double cur=s[a][b][c];
for(int i=;i<=n;i++){
if(i==a||i==b||i==c)continue;
double tmp=s[a][b][i]+s[a][c][i]+s[b][c][i];
if(fabs(tmp-cur)<=eps)return ;
}
return ;
}
int main(){
freopen("Cola.in","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d",&n);
memset(s,,sizeof(s));
memset(dp,,sizeof(dp));
for(int i=;i<n;i++)scanf("%lf%lf",&pos[i].x,&pos[i].y);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
for(int k=;k<n;k++){
//s[i][j][k]=INF;
if(i!=j&&i!=k&&j!=k)
s[i][j][k]=count(i,j,k);
} for(int i=;i<n;i++)dp[i][(i+)%n]=s[i][(i+)%n][(i+)%n];
for(int k=;k<n;k++){
for(int i=;i<n;i++){
int t=(i+k)%n;
dp[i][t]=INF;
for(int j=(i+)%n;j!=t;j=(j+)%n){
if(judge(i,t,j))dp[i][t]=min(dp[i][t],max(max(dp[i][j],dp[j][t]),s[i][j][t]));
}
}
}
double ans=INF;
for(int i=;i<n;i++)
ans=min(ans,dp[i][(i+n-)%n]);
printf("%.1lf\n",ans);
}
}

wa 预处理了所有三角形的面积就迷之wa了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
using namespace std;
int t,n;
int main(){
srand(time());
t=rand()%+;
printf("%d\n",t);
while(t--){
n=rand()%+;
printf("%d\n",n);
for(int i=;i<=n;i++){
int x=rand()%+,y=rand()%+;
printf("%d %d\n",x,y);
}
}
}

data 造小数据

#include<iostream>
#include<cstdio>
#include<cstring>
#include<windows.h>
using namespace std;
int main(){
int t=;
while(t--){
system("1331_data>Cola.in");
system("1331_thmyl<Cola.in>1.out");
system("1331_std<Cola.in>2.out");
if(system("fc 1.out 2.out"))break;
}
system("pause");
}

对拍

uva1331 Minimax Triangulation的更多相关文章

  1. UVA-1331 Minimax Triangulation 区间dp 计算几何 三角剖分 最大三角形最小化

    题目链接:https://cn.vjudge.net/problem/UVA-1331 题意 给一个任意多边形,把它分为多个三角形. 求某方案中最大的三角形是各方案中最小的面积的三角形面积. 思路 学 ...

  2. uva 1331 - Minimax Triangulation(dp)

    option=com_onlinejudge&Itemid=8&page=show_problem&category=514&problem=4077&mosm ...

  3. Minimax Triangulation

    题意: 按顺序给定一些点,把这些点分割为n - 2个三角形,花费为最大三角形面积,求最小花费 分析: 区间dp,dp[i][j]表示完成区间[i,j]最小花费,dp[i][j]=min(dp[i][j ...

  4. spoj Minimax Triangulation

    题解: dp+计算几何 F[i][j]表示第i-j条边的答案 然后转移一下 代码: #include<bits/stdc++.h> using namespace std; ]; ][]; ...

  5. UVa 1331 - Minimax Triangulation(区间DP + 计算几何)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. UVA - 1331 Minimax Triangulation (区间dp)(最优三角剖分)

    题目链接 把一个多边形剖分成若干个三角形,使得其中最大的三角形面积最小. 比较经典的一道dp问题 设dp[l][r]为把多边形[l,r]剖分成三角形的最大三角形面积中的最小值,则$dp[l][r]=m ...

  7. Uva 1331 - Minimax Triangulation(最优三角剖分 区间DP)

    题目大意:依照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值. 思路:用区间DP能够非常方便解决,多边形可能是凹边形, ...

  8. [总结-动态规划]经典DP状态设定和转移方程

    马上区域赛,发现DP太弱,赶紧复习补上. #普通DP CodeForces-546D Soldier and Number Game 筛法+动态规划 待补 UVALive-8078 Bracket S ...

  9. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

随机推荐

  1. debug x86 汇编程序指南

    --------------------------------------------------------------------------------------------------- ...

  2. 利用framebuffer,命令行显示图片

    上代码 import fcntl import struct import mmap import contextlib import os import time import numpy as n ...

  3. empty blank

    非nil对象才能调用 empty nil: 对象是否存在empty: ”“ []blank: nil emptypresent: ! blank

  4. 调用jersey发布的接口webservice,通过HttpPost传递文件

    项目媒体文件之前都是上传到七牛云处理,现在客户为了安全和私密性,准备将移动端拍摄的图片和视频传递到文件服务器,所以就想办法能不能在服务器端发布一个WebService,供移动端调用.刚好之前做的接口都 ...

  5. Cocos2d-x中定时器的使用

    CCTimer:轻量级的计时器 CCTimer (void) ccTime  getInterval (void) void  setInterval (ccTime fInterval) bool  ...

  6. Java中的访问控制

    修饰符 同一个类 同一个包 子类 整体 private Yes       default Yes Yes     protected Yes Yes Yes   public Yes Yes Yes ...

  7. Merge into使用详解( 同时执行inserts和updates操作 )

    Merge是一个非常有用的功能,类似于MySQL里的insert into on duplicate key. Oracle在9i引入了merge命令, 通过这个merge你能够在一个SQL语句中对一 ...

  8. sublime插件insertDate显示ISO时间

    1 下载insertDate插件以及安装完毕 2 把光标放在想插入ISO时间的地方 3 按住:alt+f5,之后,在sublime下面的Date format string输入:iso.之后按ente ...

  9. 洛谷P1220关路灯——区间DP

    题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...

  10. WPF GridView中的CellTemplate失效的原因

    最近做一个ListView的Style时,发现一个问题, 就是我的GridView的GridViewColumn的CellTemplate无论是用StaticResource还是DynamicReso ...