Ordered Subsequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 464    Accepted Submission(s): 216

Problem Description
A numeric sequence of ai is ordered if a1<a2<……<aN. Let the subsequence of the given numeric sequence (a1, a2,……, aN) be any sequence (ai1, ai2,……, aiK), where 1<=i1<i2 <……<iK<=N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, eg. (1, 7), (3, 4, 8) and many others.

Your program, when given the numeric sequence, must find the number of its ordered subsequence with exact m numbers.

 
Input
Multi
test cases. Each case contain two lines. The first line contains two
integers n and m, n is the length of the sequence and m represent the
size of the subsequence you need to find. The second line contains the
elements of sequence - n integers in the range from 0 to 987654321 each.
Process to the end of file.
[Technical Specification]
1<=n<=10000
1<=m<=100
 
Output
For each case, output answer % 123456789.
 
Sample Input
3 2
1 1 2
7 3
1 7 3 5 9 4 8
 
Sample Output
2
12
 
题意:问在 长度为n的串中有多少个长度为 m 的上升子序列.
题解:dp[i][j]代表以第 i 个元素结尾,长度为 j 的子序列 的个数。那么 dp[i][j] = sum(dp[k][j-1]) (1<=k<j).
但是这样的话我们直接枚举是 O(n*n*m)这样的时间复杂度是接受不了的。所以求和的那一层用树状数组优化成 O(n*log(n)*m)
/**
状态转移方程:
dp[i][j] = sum(dp[k][j-1]) (1<=k<i&&a[k]<a[i])
*/
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = ;
const int N = ;
const int M = ;
int cnt,n,m;
LL dp[N][M]; ///dp[i][j]代表第 i 个元素结尾,长度为 j 的递增子序列个数.
LL c[N],b[N],a[N]; LL lowbit(int i){
return i&(-i);
}
void update(int idx,int x,LL v){
for(int i=idx;i<=cnt;i+=lowbit(i)){
dp[i][x]=(dp[i][x]+v)%mod;
}
}
LL getsum(int idx,int x){
LL sum = ;
for(int i=idx;i>;i-=lowbit(i)){
sum=(sum+dp[i][x])%mod;
}
return sum;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
b[i] = a[i];
}
cnt = ;
for(int i=;i<=n;i++){ ///离散化 a 数组对应树状数组的 1 - cnt
if(b[i]!=b[i-]){
b[++cnt] = b[i];
}
}
sort(b+,b+cnt+);
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++){
int idx = lower_bound(b+,b++cnt,a[i])-b;
for(int j=;j<=m;j++){
LL v;
if(j == ) v = ;
else v = getsum(idx-,j-);
update(idx,j,v);
}
}
LL ans = getsum(cnt,m);
printf("%lld\n",ans);
}
return ;
}
    #include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
#define LL long long
const int mod=;
int n,m;
int a[];
int b[],cnt; inline void Add(int &a,int b){
a=(a+b)%mod;
}
inline int lowbit(int x){
return x&(-x);
}
int sum[][];
inline void add(int id,int x,int v){
while(x<=cnt){
Add(sum[id][x],v);
x+=lowbit(x);
}
}
inline int query(int id,int x){
int ans=;
while(x){
Add(ans,sum[id][x]);
x-=lowbit(x);
}
return ans;
} int main(){
while(~scanf("%d%d",&n,&m)){
cnt=;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[++cnt]=a[i];
}
sort(b+,b+cnt+);
cnt=(int)(unique(b+,b++cnt)-(b+));
for(int i=;i<=n;i++)a[i]=(int)(lower_bound(b+,b++cnt,a[i])-b); memset(sum,,sizeof sum); int ans=;
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
if(a[i]>){
int sum=query(j,a[i]-);
add(j+,a[i],sum);
}
}
add(,a[i],);
}
ans=query(m,cnt);
printf("%d\n",ans);
}
return ;
}

hdu 4991(树状数组+DP)的更多相关文章

  1. hdu 2227(树状数组+dp)

    Find the nondecreasing subsequences Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/3 ...

  2. hdu 4638 树状数组 区间内连续区间的个数(尽可能长)

    Group Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  3. hdu 4777 树状数组+合数分解

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  4. hdu 4622 Reincarnation trie树+树状数组/dp

    题意:给你一个字符串和m个询问,问你l,r这个区间内出现过多少字串. 连接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 网上也有用后缀数组搞得. 思路 ...

  5. 2018 CCPC网络赛 1010 hdu 6447 ( 树状数组优化dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=6447 思路:很容易推得dp转移公式:dp[i][j] = max(dp[i][j-1],dp[i-1][j ...

  6. 【树状数组+dp】HDU 5542 The Battle of Chibi

    http://acm.hdu.edu.cn/showproblem.php?pid=5542 [题意] 给定长为n的序列,问有多少个长为m的严格上升子序列? [思路] dp[i][j]表示以a[i]结 ...

  7. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  8. hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)

    Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  9. HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)

    题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...

随机推荐

  1. OAuth2.0 social_django微博第三方登录

    python网站第三方登录,social-auth-app-django模块, social-auth-app-django模块是专门用于Django的第三方登录OAuth2协议模块 目前流行的第三方 ...

  2. B1020 月饼(25 分)

    B1020 月饼(25 分) 月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼.现给定所有种类月饼的库存量.总售价.以及市场的最大需求量,请你计算可以获得的最大收益是多少. 注意 ...

  3. 动态规划:HDU1248-钱币兑换问题

    解题心得: (青蛙跳台阶:有n阶台阶,青蛙可以一次跳一阶也可以一次跳两阶,问总共有多好中跳法) 1.之前把这个问题的思路弄错了,以为是递推,就像青蛙跳台阶,用斐波那契求解.但是用斐波那契肯定会超范围. ...

  4. 51nod 1107 斜率小于零连线数量 特调逆序数

    逆序数的神题.... 居然是逆序数 居然用逆序数过的 提示...按照X从小到大排列,之后统计Y的逆序数... 之后,得到的答案就是传说中的解(斜率小于零) #include<bits/stdc+ ...

  5. 【Valid Sudoku】cpp

    题目: Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board could ...

  6. pycharm的常用操作:设置字体主题,注释整段代码,调整格式,批量替换等

    1.调出常用工具栏 调出的结果是下面这样的: 2.调出常用工具按钮 调出的结果如下: 3. 调整主题及文字大小 ps:如果设置后没变,需要多设置几次就好了. 4. 统一后退几格调整对齐格式 选中要调整 ...

  7. MySQL出现错误1045,用户无法连接

    1.root用户可以登陆进去 假设新建了个sqlin用户,但是无法用此用户连接MySQL 这个时候root用户可以登录吧,root用户登录进去,重新修改该用户的密码,执行语句 use mysql; u ...

  8. day05_09 列表内置方法

    1.0 count(计算元素出现的次数) t = ['to','be','or','not','to','be'].count('to') print(t) #>>>2 2.0 ex ...

  9. poj1111(单身快乐)

                                                                                                         ...

  10. 04 JVM是如何执行方法调用的(下)

    虚方法调用 Java 里所有非私有实例方法调用都会被编译成 invokevirtual 指令,而接口方法调用会被编译成 invokeinterface 指令.这两种指令,均属于 Java 虚拟机中的虚 ...