考虑任意一个数字,任何一个都会有奇怪的。。性质,就是一个可以保证不重复的方案——直接简单粗暴的最高位加数字。。于是,如同上面的那个题:+1、-1、0

但是考虑到65536KB的标准内存限制,会得出一个奇怪的性质,那就是。。。这题可以先大表之后对内存做奇怪的优化——前十位开小一点,后十位开大一点。之前计算时间复杂度的时候是1e6*20这种按照全部数组空间扫一发的方式进行计算,但是后面发现,这种方式其实是没必要,观察可以发现,实际上这道题不论怎么做奇怪的计算都是实质上的——也就是穷举SUM(2^k)。于是。。。。。。全部复杂度大概就被强行限制到了1e6的规模。之后进行任意一种方式查询即可。。。。查询复杂度是O(1)

但是最开始的时候踩了个坑——对于数字X应该怎么做才能够将他给他多加一位还能够保证不重复呢?或者说应该把新的数字加到哪里呢?最开始想到的是末尾,但是看上去末尾不够好。。。于是考虑往中间加,但是明显的限制是——排列组合的个数无论如何都不可能、也不能够,比3^N更多。于是。。。我们可以考虑愉快的吧新的位数加到想象中的二进制串串的最最前面。并且这种做法的直接好处是,可以“制度性的保证不出现重复”。。

这题当时在做的时候打了好长好长的表,试图进行相关对比。。然而。。。。有向无环图的动态规划问题。。。

当然题目中自带的坑差点把我误导了——他给的查询数字异常的大,之前以为实际达到的数字也是那么大来着。。。但是很显然不是,因为最大值的限制是2^N这个尺寸的限制。
于是在这个问题的处理上需要对最大值情况进行特殊判断。

AC代码:

#include<iostream>
#include<math.h>
using namespace std; long long dic[];
int dp1[][];
int dp[][]; void init()
{
long long kk=;
for(int i=;i<;++i)
{
dic[i]=kk;
kk*=;
}dp1[][]=; // cout<<dic[20]<<endl;
for(int i=;i<;++i)
{
for(int j=;j<dic[i];++j)
{
int val=j;
dp1[val+dic[i]][i+]+=dp1[j][i];
dp1[val][i+]+=dp1[j][i];
dp1[abs(val-dic[i])][i+]+=dp1[j][i]; }
} for(int j=;j<=dic[];++j)
{
dp[j][]=dp1[j][];
}
for(int i=;i<;++i)
{
// cout<<dic[i]<<endl;
for(int j=;j<dic[i];++j)
{
int val=j;
dp[val+dic[i]][i+-]+=dp[j][i-];
dp[val][i+-]+=dp[j][i-];
dp[abs(val-dic[i])][i+-]+=dp[j][i-]; }
}
} int main()
{
cin.sync_with_stdio(false);
// freopen("indata.in","r",stdin);
// freopen("out.txt","w",stdout);
// cout<<pow(2,20)<<endl;
init();
int t;
cin>>t;//cout<<t<<endl;
while(t--)
{
long long a,b;
cin>>a>>b;
if(b<)
{
if(a==)
{
cout<<<<endl;
continue;
}
if(abs(a)>=dic[b])cout<<<<endl;
else cout<<dp1[abs(a)][b]/<<endl;
}else
{
if(a==)
{
cout<<<<endl;
continue;
}
if(abs(a)>=dic[b])cout<<<<endl;
else cout<<dp[abs(a)][b-]/<<endl;
}
}
return ;
}

数据生成器:

#include<bits/stdc++.h>
using namespace std;
int aa=;
int main()
{
freopen("indata.in","w",stdout); long long bb=-pow(,aa)+;
cout<<(long long)pow(,aa+)-<<endl;
while(bb<pow(,aa))cout<<bb++<<" "<<aa<<endl; }

检查的代码:

#include<bits/stdc++.h>
using namespace std; long long aa[];
void init()
{
long long k=;
for(int i=;i<;++i)
{
aa[i]=k;
k*=;
}
} int main()
{
init();
freopen("out.txt","r",stdin);
long long a,summ=;
while(cin>>a)summ+=a;
cout<<summ<<endl;
cout<<aa[lower_bound(aa,aa+,summ)-aa];
}

HOJ 13845 Atomic Computer有向无环图的动态规划的更多相关文章

  1. UVA_1025 a Spy in the Metro 有向无环图的动态规划问题

    应当认为,有向无环图上的动态规划问题是动态规划的基本模型之一,对于某个模型,如果可以转换为某一有向无环图的最长.最短路径问题,则可以套用动态规划若干方法解决. 原题参见刘汝佳紫薯267页. 在这个题目 ...

  2. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  3. JavaScript + SVG实现Web前端WorkFlow工作流DAG有向无环图

    一.效果图展示及说明 (图一) (图二) 附注说明: 1. 图例都是DAG有向无环图的展现效果.两张图的区别为第二张图包含了多个分段关系.放置展示图片效果主要是为了说明该例子支持多段关系的展现(当前也 ...

  4. 湖南省第十二届大学生计算机程序设计竞赛 B 有向无环图 拓扑DP

    1804: 有向无环图 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 187  Solved: 80[Submit][Status][Web Board ...

  5. javascript实现有向无环图中任意两点最短路径的dijistra算法

    有向无环图 一个无环的有向图称做有向无环图(directed acycline praph).简称DAG 图.DAG 图是一类较有向树更一般的特殊有向图, dijistra算法 摘自 http://w ...

  6. select 函数实现 三种拓扑结构 n个客户端的异步通信 (完全图+线性链表+无环图)

    一.这里只介绍简单的三个客户端异步通信(完全图拓扑结构) //建立管道 mkfifo open顺序: cl1 读 , cl2 cl3 向 cl1写 cl2 读 , cl1 cl3 向 cl2写 cl3 ...

  7. 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...

  8. 算法精解:DAG有向无环图

    DAG是公认的下一代区块链的标志.本文从算法基础去研究分析DAG算法,以及它是如何运用到区块链中,解决了当前区块链的哪些问题. 关键字:DAG,有向无环图,算法,背包,深度优先搜索,栈,BlockCh ...

  9. c/c++ 有向无环图 directed acycline graph

    c/c++ 有向无环图 directed acycline graph 概念: 图中点与点之间的线是有方向的,图中不存在环.用邻接表的方式,实现的图. 名词: 顶点的入度:到这个顶点的线的数量. 顶点 ...

随机推荐

  1. C#语言使用习惯

    1.使用属性而不是可访问的数据成员 2.用运行时常量(readonly)而不是编译期常量(const) 编译期常量与运行时常量行为的不同之处在于对他们的访问方式不同,编译期常量的值是在目标代码中进行替 ...

  2. wepy-cli 开发小程序如何使用vant组件

    同样使用wepy-cli快速生成的小程序,目前可以使用组件: 直接通过 git 下载 Vant Weapp 源代码,并将dist目录拷贝到自己的项目中 git clone https://github ...

  3. Pod管理的iOS项目修改工程名

    声明:本文大部分内容来自于以下网址,其余的部分是自己尝试的总结和补充. http://www.jianshu.com/p/5f088acecf64 完整修改iOS工程名1 http://www.cnb ...

  4. 分享几道经典的javascript面试题

    这几道题目还是有一点意思的,大家可以研究一番,对自己的技能提升绝对有帮助. 1.调用过程中输出的内容是什么 function fun(n, o) { console.log(o); return { ...

  5. JNI教程

    一.什么是JNI JNI(Java Native Interface ),它是Java SDK的一部分,主要用于实现Java对其他语言编写的代码和库的调用,比如C和C++.JNI提供的API也能让JV ...

  6. 【extjs6学习笔记】1.13 初始: 模型

    Ext JS包括数据包Ext.data包括处理从服务器保存和检索数据的类. 以下是Ext JS 6数据包中的重要类: Model (Ext.data.Model) Store (Ext.data.St ...

  7. Visual Studio 2015 终于还是装上了

    win8.1系统 vs2015.preview_ult_CHT.iso 大小4.46G, http://download.microsoft.com/download/9/9/1/99133C05-3 ...

  8. weka属性选择使用

    醉了--- package edu.dcy.weka; import java.io.FileWriter; import java.util.ArrayList; import java.util. ...

  9. 详情介绍win7:编辑文件夹时提示操作无法完成,因为其中的文件夹或文件已在另一个程序中打开的解决过程

    我们在使用电脑中,总会遇到下面这种情况: 那怎么解决呢,现在就开始教程: 在电脑的底下显示各种图标那一行点击右键,再选择“启动任务管理器” 接下来你就可以对你刚刚要操作的文件进行重命名.删除等操作啦! ...

  10. linux 命令——48 watch (转)

    watch是一个非常实用的命令,基本所有的Linux发行版都带有这个小工具,如同名字一样,watch可以帮你监测一个命令的运行结果,省得你一遍遍的手动运行.在Linux下,watch是周期性的执行下个 ...