题目描述:

bz

luogu

题解:

相当于树上$LIS$问题。

考虑一维情况下的贪心,我们可以用multiset启发式合并搞。

代码:

#include<set>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
template<typename T>
inline void read(T&x)
{
T f = ,c = ;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=c*+ch-'';ch=getchar();}
x = f*c;
}
int n,w[N],hed[N],cnt;
struct EG
{
int to,nxt;
}e[N];
void ae(int f,int t)
{
e[++cnt].to = t;
e[cnt].nxt = hed[f];
hed[f] = cnt;
}
multiset<int>s[N];
multiset<int>::iterator it;
void Merge(int x,int y)
{
if(s[x].size()<s[y].size())swap(s[x],s[y]);
for(it=s[y].begin();it!=s[y].end();it++)s[x].insert(*it);
}
void dfs(int u)
{
for(int j=hed[u];j;j=e[j].nxt)dfs(e[j].to),Merge(u,e[j].to);
s[u].insert(w[u]);
it = s[u].lower_bound(w[u]);
if(it!=s[u].begin())s[u].erase(--it);
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(w[i]);
for(int f,i=;i<=n;i++)
read(f),ae(f,i);
dfs();printf("%d\n",s[].size());
return ;
}

bzoj5469 [FJOI2018]领导集团问题的更多相关文章

  1. 【BZOJ5469】[FJOI2018]领导集团问题(动态规划,线段树合并)

    [BZOJ5469][FJOI2018]领导集团问题(动态规划,线段树合并) 题面 BZOJ 洛谷 题解 题目就是让你在树上找一个最大的点集,使得两个点如果存在祖先关系,那么就要满足祖先的权值要小于等 ...

  2. [FJOI2018]领导集团问题

    [FJOI2018]领导集团问题 dp[i][j],i为根子树,最上面的值是j,选择的最大值 观察dp方程 1.整体Dp已经可以做了. 2.考虑优美一些的做法: dp[i]如果对j取后缀最大值,显然是 ...

  3. [FJOI2018]领导集团问题 mulitset合并

    P4577 [FJOI2018]领导集团问题 链接 luogu bzoj 他是个重题 bzoj4919: [Lydsy1706月赛]大根堆 代码改改就过了 思路 求树上的lis,要好好读题目的!!! ...

  4. P4577 [FJOI2018]领导集团问题

    P4577 [FJOI2018]领导集团问题 我们对整棵树进行dfs遍历,并用一个multiset维护对于每个点,它的子树可取的最大点集. 我们遍历到点$u$时: 不选点$u$,显然答案就为它的所有子 ...

  5. 5469: [FJOI2018]领导集团问题

    5469: [FJOI2018]领导集团问题 链接 题意: 要求在一棵树内选一个子集,满足子集内的任意两个点u,v,如果u是v的祖先,那么u的权值小于等于v. 分析: dp[u][i]表示在u的子树内 ...

  6. 题解-FJOI2018 领导集团问题

    题面 FJOI2018 领导集团问题 给一棵树 \(T(|T|=n)\),每个点有个权值 \(w_i\),从中选出一个子点集 \(P=\{x\in {\rm node}|x\in T\}\),使得 \ ...

  7. 「题解报告」P4577 [FJOI2018]领导集团问题

    题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...

  8. 洛谷P4577 [FJOI2018]领导集团问题(dp 线段树合并)

    题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不 ...

  9. 洛谷4577 & LOJ2521:[FJOI2018]领导集团问题——题解

    https://www.luogu.org/problemnew/show/P4577 https://loj.ac/problem/2521 参考:https://www.luogu.org/blo ...

随机推荐

  1. [Xcode 实际操作]九、实用进阶-(30)为IAP(支付方式)内购项目添加测试账号,测试内购功能

    目录:[Swift]Xcode实际操作 本文将演示如何添加测试账号,以方便对内购功能进行测试. IAP,即in-App Purchase ,是一种智能移动终端应用程序付费的模式, 在苹果(Apple) ...

  2. 升级ruby的版本

    升级ruby版本,有时候安装ruby的版本过低,需要进行升级,例如安装在centos6.7安装fpm需要ruby版本在1.9以上. 1.主机环境如下: [root@test ~]# cat /etc/ ...

  3. pip 参数

    pip 自带参数 pip --help pip install 自带参数 pip install --help

  4. IOS正则表达式 (身份证、电话、汉字等常用条件筛选)

    下面的正则列表   替换对应的正则规则 那个字符串就可以了  例如: //正则规则 NSString *regex = @"^((13[0-9])|(147)|(17[0-9])|(15[^ ...

  5. Tinghua Data Mining 7

    SVM B分割得更加无偏 比较公平 卡着分界面的点叫支持向量,就好比托着分界面 支持向量决定了可移动的范围,这个范围就叫margin 分界面可移动的距离 前提是先要被分对 对偶问题一般是不等价的,但是 ...

  6. Crusher Django 学习笔记3 学习使用模板系统

    http://crusher-milling.blogspot.com/2013/09/crusher-django-tutorial3-using-template.html 顺便学习一下 goag ...

  7. 蜥蜴-DInic

    题目背景 07四川省选 题目描述 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴 ...

  8. ubuntu快捷键收集

    Ctrl+Alt+T 终端 -Ctrl+Shift+C 终端复制 -Ctrl+Shift+V 终端粘贴 -Ctrl+L 清屏 -Ctrl+; 从剪切板中获得输入提示(不小心点到被诡异的提示吓到了) - ...

  9. 重新安装Magento2 Module

    如何重新安装Magento2的Module? 分类 2 类: Module是通过 composer 安装的:在命令行输入:php bin/magento module:uninstall Module ...

  10. Java编程基础-面向对象(中)

    本章承接Java编程基础-面向对象(上)一文. 一.static关键字 在java中,定义了一个static关键字,它用于修饰类的成员,如成员变量.成员方法以及代码块等,被static修饰的成员具备一 ...