第一种是统计学方法,需要用到 statsmodels

  statsmodels是统计和计量经济学的package,包含了用于参数评估和统计测试的实用工具

第二种是机器学习,需要使用sklearn中的LogisticRegression

下面以计算dis1-->dis2的OR值为例,也就是说dis1为自变量,dis2为因变量

首先我们先造一组数据: x为自变量,y为因变量

df = pd.DataFrame({'x': ['dis1', 'dis1', 'dis1', 'dis1', 'dis3', 'dis3', 'dis3', 'dis3'], 'y': ["dis2", "dis2",
"dis2", "dis4", "dis4", "dis4", "dis4", "dis2"]})

因为我要使用逻辑回归估计OR值,所以首先会计算出实际的OR值

  患dis2 不患dis2
患dis1 A B
不患dis1 C D

OR值的计算:OR_dis1_dis2 = AD/BC,其中A = 3, B = 1, C = 1, D = 3

ct = pd.crosstab(df.x, df.y)
oddsratio, pvalue = stats.fisher_exact(ct)

使用stamodel包中的逻辑回归进行OR值的估计:

df["intercept"] = 1.0  # 截距项,初始化截距项,不可省

# 拟合模型
logit = sm.Logit(df['y'], df[df.columns[1:]])
result = logit.fit() print(result.summary())
# 计算得到OR值
OR1 = np.exp(result.params)

使用机器学习方法计算OR

df = pd.get_dummies(df)
clf = LogisticRegression(penalty='none') clf.fit(df[['x_dis1']], df[['y_dis2']].values)
print(clf)
odds_ratio = np.exp(clf.coef_)
print(odds_ratio)

完整代码:

import pandas as pd
import statsmodels.api as sm
from sklearn.linear_model import LogisticRegression
import numpy as np # 构造数据
df = pd.DataFrame({'x': ['dis1', 'dis1', 'dis1', 'dis1', 'dis3', 'dis3', 'dis3', 'dis3'], 'y': ["dis2", "dis2",
"dis2", "dis4", "dis4", "dis4", "dis4", "dis2"]}) # 计算实际OR
ct = pd.crosstab(df.x, df.y)
oddsratio, pvalue = stats.fisher_exact(ct) # 使用统计学方法计算
df["intercept"] = 1.0 # 截距项,初始化截距项,不可省 # 拟合模型
logit = sm.Logit(df['y'], df[df.columns[1:]])
result = logit.fit() print(result.summary())
# 计算得到OR值
OR1 = np.exp(result.params) # 使用机器学习方法计算
df = pd.get_dummies(df)
clf = LogisticRegression(penalty='none') clf.fit(df[['x_dis1']], df[['y_dis2']].values)
print(clf)
odds_ratio = np.exp(clf.coef_)
print(odds_ratio)

Python使用逻辑回归估算OR值的更多相关文章

  1. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  2. 机器学习之使用Python完成逻辑回归

    一.任务基础 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的 ...

  3. Python之逻辑回归模型来预测

    建立一个逻辑回归模型来预测一个学生是否被录取. import numpy as np import pandas as pd import matplotlib.pyplot as plt impor ...

  4. python机器学习-逻辑回归

    1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最 ...

  5. python机器学习——逻辑回归

    我们知道感知器算法对于不能完全线性分割的数据是无能为力的,在这一篇将会介绍另一种非常有效的二分类模型--逻辑回归.在分类任务中,它被广泛使用 逻辑回归是一个分类模型,在实现之前我们先介绍几个概念: 几 ...

  6. python实现逻辑回归

    首先得明确逻辑回归与线性回归不同,它是一种分类模型.而且是一种二分类模型. 首先我们需要知道sigmoid函数,其公式表达如下: 其函数曲线如下: sigmoid函数有什么性质呢? 1.关于(0,0. ...

  7. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  8. 用python实现逻辑回归

    机器学习课程的一个实验,整理出来共享. 原理很简单,优化方法是用的梯度下降.后面有测试结果. # coding=utf-8 from math import exp import matplotlib ...

  9. Python之逻辑回归

    代码: import numpy as np from sklearn import datasets from sklearn.linear_model import LogisticRegress ...

随机推荐

  1. springboot----四、yaml配置注入

    四.yaml配置注入 4.1.配置文件 SpringBoot使用一个全局的配置文件 , 配置文件名称是固定的 application.properties 语法结构 :key=value applic ...

  2. Redis集群-Cluster模式

    我理解的此模式与哨兵模式根本区别: 哨兵模式采用主从复制模式,主和从数据都是一致的.全量数据: Cluster模式采用数据分片存储,对每个 key 计算 CRC16 值,然后对 16384 取模,可以 ...

  3. MySQL启动报错Failed to open log (file 'D:\phpStudy\PHPTutorial\MySQL\data\mysql_bin.000045', errno 2)

    MySQL报错 191105 9:39:07 [Note] Plugin 'FEDERATED' is disabled. 191105 9:39:07 InnoDB: The InnoDB memo ...

  4. LGP6156题解

    真·简单题 题目大意 给定 \(n\) 和 \(k\),求出这个柿子的值: \[\sum_{i=1}^n\sum_{j=1}^n(i+j)^k\mu^2(\gcd(i,j)gcd(i,j) \] 按照 ...

  5. 《Shader入门精要》中MVP变换的Projection矩阵与《GAMES101图形学入门》中的区别

    game101的透视投影的投影矩阵是这样的 正交投影是这样的 而shader入门精要的透视投影矩阵是这样子 正交投影矩阵是这样子 game101的透视投影是这样得到的 而正交投影的时候并没有假设中心点 ...

  6. Golang 基础之基础语法梳理 (二)

    大家好,今天将梳理出的 Go语言基础语法内容,分享给大家. 请多多指教,谢谢. 本次<Go语言基础语法内容>共分为三个章节,本文为第二章节 Golang 基础之基础语法梳理 (一) Gol ...

  7. Linux移植到自己的开发板(四)问题汇总

    @ 目录 1 使ubuntu支持两个版本的编译链: 2 版本问题: 3 ubuntu版本的vscode下载网速太慢: 4 ubuntu占用空间过大 5 执行make zImage 出错 lzop: n ...

  8. python练习册 每天一个小程序 第0006题

    1 # -*-coding:utf-8-*- 2 __author__ = 'Deen' 3 ''' 4 题目描述: 5 你有一个目录,放了你一个月的日记,都是 txt,为了避免分词的问题,假设内容都 ...

  9. 14FPGA综设之图像边沿检测的sobel算法

    连续学习FPGA基础课程接近一个月了,迎来第一个有难度的综合设计,图像的边沿检测算法sobel,用verilog代码实现算法功能. 一设计功能 (一设计要求) (二系统框图) 根据上面的系统,Veri ...

  10. Java基础 (下)

    泛型 Java 泛型了解么?什么是类型擦除?介绍一下常用的通配符? Java 泛型(generics) 是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时 ...