POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 7102 | Accepted: 3761 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …,m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
Source
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
using namespace std;
const int maxn = 110;
const int maxe = 11010;
struct Edge{
int from,to,dist,idx;
Edge(){}
Edge(int _from,int _to,int _dist,int _idx):from(_from),to(_to),dist(_dist),idx(_idx){}
}edges[maxe];
struct Set{
int pa,rela;
}sets[maxn];
int ans[maxn];
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
void init(int n){
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
}
int Find(int x){
if(x == sets[x].pa){
return x;
}
int tmp = sets[x].pa;
sets[x].pa = Find(tmp);
return sets[x].pa;
}
int main(){
int n, m;
while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
init(n);
int a,b,c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
edges[i] = Edge(a,b,c,i);
}
sort(edges,edges+m,cmp);
int pos = 0 , cnt = 0;
for(int i = 0; i < m; i++){
Edge & e = edges[i];
int rootx, rooty;
rootx = Find(e.from);
rooty = Find(e.to);
if(rootx == rooty){
continue;
}
cnt++;
sets[rooty].pa = rootx;
pos = i;
}
if(cnt != n - 1){
puts("-1");
continue;
}
int ans = edges[pos].dist - edges[0].dist;
for(int j = 1; j <= m - n + 1; j++){
cnt = 0;
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
for(int i = j; i < m; i++){
Edge & e = edges[i];
int rootx, rooty;
rootx = Find(e.from);
rooty = Find(e.to);
if(rootx == rooty) {
continue;
}
sets[rooty].pa = rootx;
cnt++;
pos = i;
}
if(cnt < n-1){
break;
}else{
int tmp = edges[pos].dist - edges[j].dist;
ans = min(ans,tmp);
}
}
printf("%d\n",ans);
}
return 0;
}
POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】的更多相关文章
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- Slim Span (最小生成树)
题意 求生成树的最长边与最短边的差值的最小值 题解 最小生成树保证每一条边最小,就只要枚举最小边开始,跑最小生成树,最后一个值便是最大值 在枚举最小边同时维护差值最小,不断更新最小值. C++代码 / ...
随机推荐
- Liunx在开机后,自动启动openldap、radius、memcached等程序的shell脚本
以下是脚本命令: #!/bin/bash #说明:此文件需放在/etc/rc.d/init.d/目录下,然后编辑文件/etc/rc.d/rc.local,在里面添加bash /etc/init.d/A ...
- iOS状态栏、导航栏的设置
简单的参考 1.状态栏(statusBar) 默认:黑色 改变为白色: 1.1 第一步: info.plist中添加View controller-based status bar appearanc ...
- 使用Google浏览器开发者工具学习HTTP请求记录
GET请求 1.Google浏览器开发者工具截图图示 2.General Request URL :为请求链接 Status Code :为HTTP响应状态码 3.ResponseHeaders :响 ...
- server12装.NET 3.5
参考:https://support.microsoft.com/en-us/help/2734782/net-framework-3-5-installation-error-0x800f0906- ...
- luogu1632 点的移动
其实只需要开三重循环 根据OI中的一个重要的原理 给定一个序列a,求一个数x使得\(\sum |a_i-x|\)最小,那么这个数是序列a的中位数 证明略 然后既然是中位数,一定是数列中的数,类比到这题 ...
- numpy方法介绍
三.numpy系列 1.np.maximum:(X, Y, out=None) X 与 Y 逐位比较取其大者: 最少接收两个参数 h=[[-2,2,10],[-5,-9,20]] hh=np.maxi ...
- 项目笔记《DeepLung:Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification》(一)预处理
最近一个月都在做肺结节的检测,学到了不少东西,运行的项目主要是基于这篇论文,在github上可以查到项目代码. 我个人总结的肺结节检测可以分为三个阶段,数据预处理,网络搭建及训练,结果评估. 这篇博客 ...
- BestCoder Round #66 1002
GTW likes gt Accepts: 75 Submissions: 261 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 1 ...
- linux 中iscsi服务
###############第一步: 创建一个2G的分区第二步: yum install targetcli -y 第三步:创建一个2G的分区,并同步 第四步: 执行tagetclils查看 ...
- 6.过滤器(Filter)
---恢复内容开始--- 1.过滤器简介: 过滤器是一个用于拦截在数据源和数据目的地之间消息的一个对象. 过滤器 功能: 分析请求,将请求发送给指定的资源或自己创建一个响应返回:在请求到达服务器端前处 ...