POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 7102 | Accepted: 3761 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …,m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
Source
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
using namespace std;
const int maxn = 110;
const int maxe = 11010;
struct Edge{
int from,to,dist,idx;
Edge(){}
Edge(int _from,int _to,int _dist,int _idx):from(_from),to(_to),dist(_dist),idx(_idx){}
}edges[maxe];
struct Set{
int pa,rela;
}sets[maxn];
int ans[maxn];
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
void init(int n){
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
}
int Find(int x){
if(x == sets[x].pa){
return x;
}
int tmp = sets[x].pa;
sets[x].pa = Find(tmp);
return sets[x].pa;
}
int main(){
int n, m;
while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
init(n);
int a,b,c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
edges[i] = Edge(a,b,c,i);
}
sort(edges,edges+m,cmp);
int pos = 0 , cnt = 0;
for(int i = 0; i < m; i++){
Edge & e = edges[i];
int rootx, rooty;
rootx = Find(e.from);
rooty = Find(e.to);
if(rootx == rooty){
continue;
}
cnt++;
sets[rooty].pa = rootx;
pos = i;
}
if(cnt != n - 1){
puts("-1");
continue;
}
int ans = edges[pos].dist - edges[0].dist;
for(int j = 1; j <= m - n + 1; j++){
cnt = 0;
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
for(int i = j; i < m; i++){
Edge & e = edges[i];
int rootx, rooty;
rootx = Find(e.from);
rooty = Find(e.to);
if(rootx == rooty) {
continue;
}
sets[rooty].pa = rootx;
cnt++;
pos = i;
}
if(cnt < n-1){
break;
}else{
int tmp = edges[pos].dist - edges[j].dist;
ans = min(ans,tmp);
}
}
printf("%d\n",ans);
}
return 0;
}
POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】的更多相关文章
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- Slim Span (最小生成树)
题意 求生成树的最长边与最短边的差值的最小值 题解 最小生成树保证每一条边最小,就只要枚举最小边开始,跑最小生成树,最后一个值便是最大值 在枚举最小边同时维护差值最小,不断更新最小值. C++代码 / ...
随机推荐
- winform GDI基础(一)
1获取画布 (1)从PaintEventArgs类中获取画布 private void Form1_Paint(object sender, PaintEventArgs e) { Graphics ...
- 洛谷 P1879 [USACO06NOV]玉米田Corn Fields
题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...
- day02.2-常用Linux命令整理
Linux命令语法格式: 命令 [选项] [参数] 1). 命令:告诉Linux操作系统执行什么: 2). 选项:说明命令的运行方式.选项部分是以字符‘-’开始的: 3). 参数:说明 ...
- MongoDB入门,安装配置与基本CURD操作
MongoDB特点 MongoDB是NoSQL的一种,非关系型数据库,或者叫不只是关系型数据库(Not Only SQL).MongoDB采用json格式的文档存储,与Redis的key-value有 ...
- DB2安装步骤
##################################DB2的安装########################### ## 安装前准备 ## 关闭内存地址随机化机制 vi /etc/ ...
- 【BZOJ2438】[中山市选]杀人游戏 Tarjan+概率
[中山市选]杀人游戏 Tarjan+概率 题目描述 一位冷血的杀手潜入\(Na\)-\(wiat\),并假装成平民.警察希望能在\(N\)个人里面,查出谁是杀手.警察能够对每一个人进行查证,假如查 ...
- 分割字符串(C++)
方案1: 利用"IO流"的概念,即C++中的stream,我们都用过C++中std::iostream中的std::istream与std::ostream 如果你接触过网络编程( ...
- css雪碧图制作
使用css背景合并工具cssSprite 工具下载链接: http://download.csdn.net/download/wx247919365/8741243 1.选择文件 2.生成雪碧图 3. ...
- drozer与adb工具的安装与使用
drozer:链接: https://pan.baidu.com/s/1skTJdgh 密码: wah1 adb:链接: https://pan.baidu.com/s/1gfpIkuv 密码: n8 ...
- LeeCode(5. Longest Palindromic Substring)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...