[洛谷P2613]【模板】有理数取余
题目大意:给你$a,b(a,b\leqslant10^{10001})$,求出$\dfrac a b\equiv1\pmod{19260817}$,无解输出 Angry!
题解:在读入的时候取模,若$b=0$输出无解,否则正常的求逆就行了
卡点:无
C++ Code:
#include <cstdio>
#include <cctype>
const long long mod = 19260817;
long long a, b;
inline long long read() {
long long x;
char t = getchar();
while (isspace(t)) t = getchar();
for (x = t & 15, t = getchar(); isdigit(t); t = getchar()) x = (x * 10 + (t & 15)) % mod;
return x;
}
void exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) x = 1, y = 0;
else exgcd(b, a % b, y, x), y -= a / b * x;
}
inline long long INV(long long a) {
long long x, y;
exgcd(a, mod, x, y);
if (x < 0) x += mod;
return x;
}
int main() {
a = read(), b = read();
if (!b) {
puts("Angry!");
return 0;
}
printf("%lld\n", a * INV(b) % mod);
return 0;
}
[洛谷P2613]【模板】有理数取余的更多相关文章
- [洛谷P2613] [模板] 有理数取余
刷水题. 传送门 看似高精而非高精乃是此题最大亮点. 边读边取模技能get~ #include<cstdio> #define ll long long #define mod 19260 ...
- 洛谷 P2613 【模板】有理数取余
P2613 [模板]有理数取余 题目描述 给出一个有理数c=\frac{a}{b}c=ba,求c\ \bmod 19260817c mod19260817的值. 输入输出格式 输入格式: 一共两行. ...
- 洛谷——P2613 【模板】有理数取余
P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817 ...
- P2613 【模板】有理数取余 (数论)
题目 P2613 [模板]有理数取余 解析 简单的数论题 发现并没有对小数取余这一说,所以我们把原式化一下, \[(c=\frac{a}{b})\equiv a\times b^{-1}(mod\ p ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 题解 P2613 【【模板】有理数取余】
题目链接 我们先看这个式子: $c=\dfrac{a}{b}$ $ $ $ $ $mod$ $ $ $ $ $19260817$ 某正常高中生:这$……$ --- 对于这个 $c$ . 显然,它很可能 ...
- P2613 有理数取余
原题链接 https://www.luogu.org/problemnew/show/P2613 在这里虽然是讲洛谷的题解,但用到的数论知识,归并到数论里也不为过! 进入正题: 首先看到题面:给出一个 ...
- 【洛谷2252&HDU1527】取石子游戏(博弈论)
题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- 通过tomcat配置访问本机资源
背景:在最近的项目中使用海康威视的摄像机,在项目预算中没有购买对应的硬盘录像机,但是由于客户需要能够进行视频的回放功能,所以直接采用了海康提供的视频管理客户端直接进行视频录像,然后保存在本机进行播放. ...
- turtle画玫瑰花
import turtle turtle.screensize(400, 300, "pink") turtle.setup(1000, 600) turtle.write('作者 ...
- Percona-Tookit工具包之pt-stalk
Preface We have a lot of methods to diagnose problems in our system such as strace,pstack,gs ...
- 《JSON笔记之三》---postman中传入json串
1.关于如何使用postman工具,简单的介绍一下, 用户在开发或者调试网络程序或者是网页B/S模式的程序的时候是需要一些方法来跟踪网页请求的,用户可以使用一些网络的监视工具比如著名的Firebug等 ...
- eclipse引入jquery文件报错解决
以下内容是小编给大家带来的关于Eclipse引入jquery报错如何解决的全部叙述,具体内容如下所示: 第一步: 去除eclipse的JS验证: 将windows->preference-> ...
- redis源代码结构解析
看了黄建宏老师的<Redis设计与实现>,对redis的部分实现有了一个简明的认识: 之前面试的时候被问到了这部分的内容,没有关注,好在还有时间,就把Redis的源码看了一遍. Redis ...
- 关于TP3.2框架读取Sql server中文字段数据以及处理乱码的一些小心得
最近要做一个项目,需要使用TP3.2框架,之前什么也不会,就硬着头皮上了,结果真的闹了挺多emmmmmm挺低级的错误,就像SQL Server中文字段的读取,一开始我是照着读取英文字段的格式来写的,在 ...
- python学习之控制流1
配置环境:python 3.6 python编辑器:pycharm 代码如下: #!/usr/bin/env python #-*- coding: utf-8 -*- # 控制流: # 1.布尔值: ...
- Python学习笔记:单例模式
单例模式:一个类无论实例化多少次,返回的都是同一个实例,例如:a1=A(), a2=A(), a3=A(),a1.a2和a3其实都是同一个对象,即print(a1 is a2)和print(a2 is ...
- C++基础 C++对类的管理——封装
1.封装 两层含义: (1)把事物的属性和方法结合成个整体. (2)对类的属性和方法进行访问控制,对不信的进行信息屏蔽. 2.访问控制 控制分为 类的内部,类的外部. public 修饰的成员,可在内 ...