[洛谷P2613]【模板】有理数取余
题目大意:给你$a,b(a,b\leqslant10^{10001})$,求出$\dfrac a b\equiv1\pmod{19260817}$,无解输出 Angry!
题解:在读入的时候取模,若$b=0$输出无解,否则正常的求逆就行了
卡点:无
C++ Code:
#include <cstdio>
#include <cctype>
const long long mod = 19260817;
long long a, b;
inline long long read() {
long long x;
char t = getchar();
while (isspace(t)) t = getchar();
for (x = t & 15, t = getchar(); isdigit(t); t = getchar()) x = (x * 10 + (t & 15)) % mod;
return x;
}
void exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) x = 1, y = 0;
else exgcd(b, a % b, y, x), y -= a / b * x;
}
inline long long INV(long long a) {
long long x, y;
exgcd(a, mod, x, y);
if (x < 0) x += mod;
return x;
}
int main() {
a = read(), b = read();
if (!b) {
puts("Angry!");
return 0;
}
printf("%lld\n", a * INV(b) % mod);
return 0;
}
[洛谷P2613]【模板】有理数取余的更多相关文章
- [洛谷P2613] [模板] 有理数取余
刷水题. 传送门 看似高精而非高精乃是此题最大亮点. 边读边取模技能get~ #include<cstdio> #define ll long long #define mod 19260 ...
- 洛谷 P2613 【模板】有理数取余
P2613 [模板]有理数取余 题目描述 给出一个有理数c=\frac{a}{b}c=ba,求c\ \bmod 19260817c mod19260817的值. 输入输出格式 输入格式: 一共两行. ...
- 洛谷——P2613 【模板】有理数取余
P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817 ...
- P2613 【模板】有理数取余 (数论)
题目 P2613 [模板]有理数取余 解析 简单的数论题 发现并没有对小数取余这一说,所以我们把原式化一下, \[(c=\frac{a}{b})\equiv a\times b^{-1}(mod\ p ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 题解 P2613 【【模板】有理数取余】
题目链接 我们先看这个式子: $c=\dfrac{a}{b}$ $ $ $ $ $mod$ $ $ $ $ $19260817$ 某正常高中生:这$……$ --- 对于这个 $c$ . 显然,它很可能 ...
- P2613 有理数取余
原题链接 https://www.luogu.org/problemnew/show/P2613 在这里虽然是讲洛谷的题解,但用到的数论知识,归并到数论里也不为过! 进入正题: 首先看到题面:给出一个 ...
- 【洛谷2252&HDU1527】取石子游戏(博弈论)
题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- Oracle 的jdbc方法
package com.swift.jdbc_oracle; import java.sql.CallableStatement; import java.sql.Connection; import ...
- ES6初识-Decorator
开始先按照个插件 npm install babel-plugin-transform-decorators-lagacy --save-dev 1.扩充和修改类的行为 2.修改的行为@readonl ...
- 自定义动画函数JQuery实现
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Intellij IDEA 查找接口实现类的快捷键
查找接口的实现类: IDEA 风格 ctrl + alt +B 查看类或接口的继承关系: ctrl + h 1.IDEA_查找接口的实现 的快捷键 http://blog.csdn.net/u0100 ...
- SpringBoot注入Mapper提示Could not autowire. No beans of 'xxxMapper' type found错误
通过用Mabatis的逆向工程生成的Entity和Mapper.在Service层注入的时候一直提示Could not autowire. No beans of 'xxxMapper' type f ...
- 使用Git将本地项目上传到码云
01.码云上创建一个项目 testgit (名字随意) 02.进入本地想要上传的目录,然后使用git bash 03.cd到想要上传的目录 04.$ git init 初始化一个git 本地仓库(项目 ...
- rsync同步备份搭建
Rsync 是 Unix/Linux 下的一款应用软 在平常的运维中进常要对一些数据进行备份,以防止意外的服务器故障导致不可避免的后果,tar,cp只能适应一些小范围backup,对于几T甚至几P的数 ...
- 第五章 标准I/O
5.1 引言 本章说明标准 I/O 库.因为不仅在 UNIX 上,而且在很多操作系统上都实现了此库,所以它由 ISO C 标准说明. 标准 I/O 库处理很多细节,例如缓冲区分配,以优化长度执行 I/ ...
- python创建字典
创建: {x:x**2 for x in (2,4,6)} dict(xjm=110,lxh=119,pzq=120) dict([('a',1),('b',2),('c',3)])
- 十、mysql之索引原理与慢查询优化
mysql之索引原理与慢查询优化 一.介绍 1.什么是索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还 ...