题目描述

某校开展了同学们喜闻乐见的阳光长跑活动。为了能“为祖国健康工作五十年”,同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动。一时间操场上熙熙攘攘,摩肩接踵,盛况空前。
为了让同学们更好地监督自己,学校推行了刷卡机制。
学校中有n个地点,用1到n的整数表示,每个地点设有若干个刷卡机。
有以下三类事件:
1、修建了一条连接A地点和B地点的跑道。
2、A点的刷卡机台数变为了B。
3、进行了一次长跑。问一个同学从A出发,最后到达B最多可以刷卡多少次。具体的要求如下:
当同学到达一个地点时,他可以在这里的每一台刷卡机上都刷卡。但每台刷卡机只能刷卡一次,即使多次到达同一地点也不能多次刷卡。
为了安全起见,每条跑道都需要设定一个方向,这条跑道只能按照这个方向单向通行。最多的刷卡次数即为在任意设定跑道方向,按照任意路径从A地点到B地点能刷卡的最多次数。

输入

输入的第一行包含两个正整数n,m,表示地点的个数和操作的个数。
第二行包含n个非负整数,其中第i个数为第个地点最开始刷卡机的台数。
接下来有m行,每行包含三个非负整数P,A,B,P为事件类型,A,B为事件的两个参数。
最初所有地点之间都没有跑道。
每行相邻的两个数之间均用一个空格隔开。表示地点编号的数均在1到n之间,每个地点的刷卡机台数始终不超过10000,P=1,2,3。

输出

输出的行数等于第3类事件的个数,每行表示一个第3类事件。如果该情况下存在一种设定跑道方向的方案和路径的方案,可以到达,则输出最多可以刷卡的次数。如果A不能到达B,则输出-1。

样例输入

9 31
10 20 30 40 50 60 70 80 90
3 1 2
1 1 3
1 1 2
1 8 9
1 2 4
1 2 5
1 4 6
1 4 7
3 1 8
3 8 8
1 8 9
3 8 8
3 7 5
3 7 3
1 4 1
3 7 5
3 7 3
1 5 7
3 6 5
3 3 6
1 2 4
1 5 5
3 3 6
2 8 180
3 8 8
2 9 190
3 9 9
2 5 150
3 3 6
2 1 210
3 3 6

样例输出

-1
-1
80
170
180
170
190
170
250
280
280
270
370
380
580


题解

LCT+并查集

首先考虑答案是什么:如果图是一个森林的话,那么答案显然是两点之间路径上的点权之和。

如果不是森林的话,考虑把每个边双缩成一个点,只要到达这个边双各种的任意一个点即可全部到达。所以答案为两点之间路径上所有边双的点权之和。

所以只需要动态维护边双即可。

考虑到没有删除操作,所以可以使用并查集维护每个点所在的边双。同时使用LCT维护树的形态结构。

具体地,对于每个加边操作,如果它们不在同一个边双里且未连通,则把它们所在边双连上。否则如果它们不在同一个边双里且已经连通,则需要提取它们之间的路径,把路径上的点所在边双全部改为新的边双并在LCT中“删除”这些点。这个过程可以直接对Splay Tree进行dfs实现,并使用并查集来维护。

同时因为使用并查集“删点”,所以在查询父亲时需要在并查集中find。

修改和查询操作和普通的LCT相同。

总的时间复杂度为常数巨大的$O((n+m)\log n)$。亲测必须使用并查集维护森林的连通性而非LCT中的findroot函数,以及加上读入优化才可以过(出题人卡常数丧心病狂= =)

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 150010
using namespace std;
int v[N] , f[N] , fa[N] , c[2][N] , w[N] , sum[N] , rev[N] , con[N];
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
int fc(int x)
{
return x == con[x] ? x : con[x] = fc(con[x]);
}
void pushup(int x)
{
sum[x] = sum[c[0][x]] + sum[c[1][x]] + w[x];
}
void pushdown(int x)
{
if(rev[x]) swap(c[0][x] , c[1][x]) , rev[c[0][x]] ^= 1 , rev[c[1][x]] ^= 1 , rev[x] = 0;
}
bool isroot(int x)
{
return c[0][find(fa[x])] != x && c[1][find(fa[x])] != x;
}
void update(int x)
{
if(!isroot(x)) update(find(fa[x]));
pushdown(x);
}
void rotate(int x)
{
int y = find(fa[x]) , z = find(fa[y]) , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
pushup(y) , pushup(x);
}
void splay(int x)
{
update(x);
while(!isroot(x))
{
int y = find(fa[x]) , z = find(fa[y]);
if(!isroot(y)) rotate((c[0][y] == x) ^ (c[0][z] == y) ? x : y);
rotate(x);
}
}
void access(int x)
{
int t = 0;
while(x) splay(x) , c[1][x] = t , pushup(x) , t = x , x = find(fa[x]);
}
void makeroot(int x)
{
access(x) , splay(x) , rev[x] ^= 1;
}
void link(int x , int y)
{
makeroot(x) , fa[x] = y;
}
void split(int x , int y)
{
makeroot(x) , access(y) , splay(y);
}
void cut(int x , int y)
{
split(x , y) , c[0][y] = fa[x] = 0 , pushup(y);
}
void dfs(int x , int y)
{
f[x] = y;
pushdown(x);
if(c[0][x]) dfs(c[0][x] , y);
if(c[1][x]) dfs(c[1][x] , y);
}
inline int read()
{
int ret = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') ret = (ret << 3) + (ret << 1) + ch - '0' , ch = getchar();
return ret;
}
int main()
{
int n , m , i , opt , x , y , tx , ty;
n = read() , m = read();
for(i = 1 ; i <= n ; i ++ ) sum[i] = w[i] = v[i] = read() , f[i] = con[i] = i;
for(i = 1 ; i <= m ; i ++ )
{
opt = read() , x = read() , y = read() , tx = find(x);
if(opt != 2) ty = find(y);
if(opt == 1)
{
if(tx != ty)
{
if(fc(tx) != fc(ty)) link(tx , ty) , con[con[tx]] = con[ty];
else split(tx , ty) , w[ty] = sum[ty] , dfs(ty , ty) , c[0][ty] = 0;
}
}
else if(opt == 2) splay(tx) , w[tx] += y - v[x] , sum[tx] += y - v[x] , v[x] = y;
else if(fc(tx) != fc(ty)) puts("-1");
else split(tx , ty) , printf("%d\n" , sum[ty]);
}
return 0;
}

【bzoj2959】长跑 LCT+并查集的更多相关文章

  1. BZOJ2959长跑——LCT+并查集(LCT动态维护边双连通分量)

    题目描述 某校开展了同学们喜闻乐见的阳光长跑活动.为了能“为祖国健康工作五十年”,同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动.一时间操场上熙熙攘攘,摩肩接踵,盛况空前. 为 ...

  2. bzoj2959: 长跑(LCT+并查集)

    题解 动态树Link-cut tree(LCT)总结 LCT常数大得真实 没有环,就是\(lct\)裸题吧 有环,我们就可以绕环转一圈,缩点 怎么搞? 当形成环时,把所有点的值全部加到一个点上,用并查 ...

  3. bzoj2959: 长跑 LCT+并查集+边双联通

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2959 题解 调了半天,终于调完了. 显然题目要求是求出目前从 \(A\) 到 \(B\) 的可 ...

  4. BZOJ 2959 长跑 (LCT+并查集)

    题面:BZOJ传送门 当成有向边做的发现过不去样例,改成无向边就忘了原来的思路.. 因为成环的点一定都能取到,我们把它们压成一个新点,权值为环上所有点的权值和 这样保证了图是一颗森林 每次询问转化为, ...

  5. 【bzoj4998】星球联盟 LCT+并查集

    题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两个 ...

  6. 【BZOJ2959】长跑 (LCT+并查集)

    Time Limit: 1000 ms   Memory Limit: 256 MB Description 某校开展了同学们喜闻乐见的阳光长跑活动.为了能“为祖国健康工作五十年”,同学们纷纷离开寝室 ...

  7. bzoj 2959: 长跑【LCT+并查集】

    如果没有环的话直接LCT 考虑有环怎么办,如果是静态的话就tarjan了,但是这里要动态的缩环 具体是link操作的时候看一下是否成环(两点已联通),成环的话就用并查集把这条链缩到一个点,把权值加给祖 ...

  8. bzoj4998 星球联盟 LCT + 并查集

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4998 题解 根据题意,就是要动态维护点双,求出一个点双的权值和. 所以这道题就是和 bzoj2 ...

  9. BZOJ4998星球联盟——LCT+并查集(LCT动态维护边双连通分量)

    题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成 联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两 ...

随机推荐

  1. CSU 1216异或最大值 (0-1 trie树)

    Description 给定一些数,求这些数中两个数的异或值最大的那个值 Input 多组数据.第一行为数字个数n,1 <= n <= 10 ^ 5.接下来n行每行一个32位有符号非负整数 ...

  2. Linux相关知识

    1.设置代理 sudo vi /etc/apt/apt.conf Acquire::http::Proxy "http://proxy_address:8080/"; 2.生成 s ...

  3. 爬虫学习(十四)——xpath项目实践

    import osimport timeimport urllib.requestimport urllib.parsefrom lxml import etree # 构建面向对象的代码方式clas ...

  4. python--Wrapper

    然后给大家介绍的是Wrapper(装饰器),使用广泛.python笔试,面试的话也会百分百问到的,基础和中级的知识储备还是必用的. 让我们开始. 先来一些基础相关知识 *args,**kwargs的区 ...

  5. 004---Django简单示例

    一.MVC与MTV模型  在web开发领域里著名的MVC模式,所谓MVC就是把web应用分为模型(M).控制器(C).视图(V)三层,达到了解耦的效果. 一次完整的请求如图: 但是django用的是M ...

  6. python-11多线程

    1-多任务可以由多进程完成,也可以由一个进程内的多线程完成. 1.1多线程代码示例 import time, threading def loop(): print("thread %s i ...

  7. 动态调试smali代码

    Android Killer对应用进行反编译为smali代码,看看Manifest文件中application标签里面是否有android:debuggable="true",没有 ...

  8. scrapy如何实现分布式爬虫

    使用scrapy爬虫的时候,记录一下如何分布式爬虫问题: 关键在于多台主机协作的关键:共享爬虫队列 主机:维护爬取队列从机:负责数据抓取,数据处理,数据存储 队列如何维护:Redis队列Redis 非 ...

  9. Python locale 多语言模块和我遇到的坑

    Table of Contents 1. locale遇到的问题 1.1. locale 简介 1.1.1. 什么是locale 1.1.2. locale 相关命令 1.2. Python loca ...

  10. html+css调用服务器端字体

    在浏览网页时,由于客户端没有安装某些特殊字体,导致网页文字无法按设计正常显示,这时我们可以使用服务器字体来避免这种现象的发送 语法 @font-face { /* 自定义字体名称 */ font-fa ...