题意:每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M.

道路i连接牛棚P1_i和P2_i (1 <= P1_i <= N; 1 <= P2_i<= N). John需要T_i (1 <= T_i <= 1,000,000)时间单位用道路i从P1_i走到P2_i或者从P2_i 走到P1_i

他想更新一些路经来减少每天花在路上的时间.具体地说,他想更新K (1 <= K <= 20)条路经,将它们所须时间减为0.

帮助FJ选择哪些路经需要更新使得从1到N的时间尽量少.

N<=10000

思路:裂点建分层图后跑最短路

C++ dijksta+堆板子

 #include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef vector<int> VI;
#define fi first
#define se second
#define MP make_pair
#define N 11000
#define M 51000
#define eps 1e-8
#define pi acos(-1)
#define oo 1e9
priority_queue<pair<int,int> > q;
int num[N][],head[N*],vet[M*],len[M*],nxt[M*],
dis[N*],vis[N*],tot; int add(int a,int b,int c)
{
nxt[++tot]=head[a];
vet[tot]=b;
len[tot]=c;
head[a]=tot;
} int main()
{
int n,m,K;
scanf("%d%d%d",&n,&m,&K);
int s=;
for(int i=;i<=n;i++)
for(int j=;j<=K;j++) num[i][j]=++s;
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
for(int j=;j<K;j++)
{
add(num[x][j],num[y][j+],);
add(num[y][j],num[x][j+],);
}
for(int j=;j<=K;j++)
{
add(num[x][j],num[y][j],z);
add(num[y][j],num[x][j],z);
}
}
memset(vis,,sizeof(vis));
memset(dis,0x3f,sizeof(dis));
q.push(MP(,num[][])); dis[num[][]]=;
while(!q.empty())
{
int u=q.top().se;
q.pop();
if(vis[u]) continue;
vis[u]=;
int e=head[u];
while(e)
{
int v=vet[e];
if(dis[u]+len[e]<dis[v])
{
dis[v]=dis[u]+len[e];
q.push(MP(-dis[v],v));
}
e=nxt[e];
}
}
int ans=oo;
for(int i=;i<=K;i++) ans=min(ans,dis[num[n][i]]);
printf("%d\n",ans);
return ;
}

【BZOJ1579】Revamping Trails(分层图,最短路,堆)的更多相关文章

  1. [BZOJ1579] [Usaco2009 Feb]Revamping Trails 道路升级(分层图最短路 + 堆优化dijk)

    传送门 dis[i][j]表示第i个点,更新了j次的最短路 此题不良心,卡spfa #include <queue> #include <cstdio> #include &l ...

  2. 【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路

    题目描述 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 < ...

  3. BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路

    BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M ...

  4. P2939 [USACO09FEB]改造路Revamping Trails(分层图最短路)

    传送门 完了我好像连分层图最短路都不会了……果然还是太菜了…… 具体来说就是记录一个步数表示免费了几条边,在dijkstra的时候以步数为第一关键字,距离为第二关键字.枚举边的时候分别枚举免不免费下一 ...

  5. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路 + Dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  6. BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路

    BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路 Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切, ...

  7. poj3635Full Tank?[分层图最短路]

    Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7248   Accepted: 2338 Descri ...

  8. HDU 5669 线段树优化建图+分层图最短路

    用线段树维护建图,即把用线段树把每个区间都标号了,Tree1中子节点有到达父节点的单向边,Tree2中父节点有到达子节点的单向边. 每次将源插入Tree1,汇插入Tree2,中间用临时节点相连.那么T ...

  9. BZOJ 2763 分层图最短路

    突然发现我不会分层图最短路,写一发. 就是同层中用双向边相连,用单向边连下一层 #include <cstdio> #include <algorithm> #include ...

  10. 【网络流24题】 No.15 汽车加油行驶问题 (分层图最短路i)

    [题意] 问题描述:给定一个 N*N 的方形网格,设其左上角为起点◎, 坐标为( 1, 1), X 轴向右为正, Y轴向下为正, 每个方格边长为 1, 如图所示. 一辆汽车从起点◎出发驶向右下角终点▲ ...

随机推荐

  1. sessionStorage对象

    sessStorage对象是一个会话形式的数据存储,当用户关闭浏览器的窗口后,数据就会被删除. 实例: <!DOCTYPE html><html><head> &l ...

  2. 廖老师JavaScript教程高阶函数-sort用法

    先来学习一个新词:高阶函数 高阶函数英文叫Higher-order function.那么什么是高阶函数? JavaScript的函数其实都指向某个变量.既然变量可以指向函数,函数的参数能接收变量,那 ...

  3. ORACLE中RECORD、VARRAY、TABLE、IS REF CURSOR 的使用及实例详解

    ORACLE中RECORD.VARRAY.TAB.IS REF CURSOR LE的使用及实例详解 create or replaceprocedure PRO_RECORD_ROW_TAB_EXAM ...

  4. 自行实现一个简易RPC框架

    10分钟写一个RPC框架 1.RpcFramework package com.alibaba.study.rpc.framework; import java.io.ObjectInputStrea ...

  5. vscode的eslint插件不起作用

    最近在用vue进行开发,但是vsCode中的eslint插件装上之后不起作用 1.vsCode打开“设置”,选择"settings.json" 2.输入一段脚本 "esl ...

  6. 【wqs二分 决策单调性】HHHOJ#261. Brew

    第一道决策单调性…… 题目描述 HHHOJ#261. Brew 题目分析 挺好的……模板题? 寄存了先. #include<bits/stdc++.h> typedef long long ...

  7. [LOJ] #2360. 「NOIP2016」换教室

    期望DP #include<iostream> #include<cstring> #include<cstdio> #include<cctype> ...

  8. apply 与 lambda

    Python中的lambda和apply用法  https://blog.csdn.net/anshuai_aw1/article/details/82347016

  9. python模块之pickle

    和json不同的是: json只支持str,int,tuple,list,dict. pickle支持python里所有的数据类型,但是只能在python里序列化,不跨平台,python独有. 代码示 ...

  10. CSS 预处理器框架

    CSS 预处理器框架 可以按照需求来使用别人的代码 1.sass (compass) 2.less (lesshat/EST) 3.提供现成的 mixin 4.类似 JS 类库 ,封装常用功能 css ...