求a,b的最大公约数我们经常用欧几里得算法解决,也称辗转相除法,

代码很简短,

int gcd(int a,int b){
return (b==0)?a:gcd(b,a%b);
}

但其中的道理却很深刻,完全理解不简单,以前都只是记一下代码,今天研究了很久,才差不多理解了其中的原因

从代码可以看出,gcd(a,b)=gcd(b,a%b),关键就在于证明这个等式

证明如下,

设c=gcd(a,b),则a=kc,b=nc(n,c为正整数),

设r=a%b,可得r=a-mb(m为a/b向下取整),

将a,b代入,得r=kc-mnc=(k-mn)c,

可证(k-mn)与n互质,过程如下

反证法,若(k-mn)与n不互质,则存在正整数d(d>1)使得k-mn=xd,n=yd,

则k=mn+xd=myd+xd=(my+x)d,

那么a=kc=(my+x)dc,b=nc=ydc,在这里gcd(a,b)变成了dc,而d>1则dc<>c,不成立

所以k-mn与n互为质数

接下来令t=k-mn,那么r=tc,可以发现b=nc且n与t互质,那么gcd(b,r)会等于c

从而得出gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)的结论

Hint

那么为什么不能是gcd(a,b)=gcd(a,r)呢?这个问题其实不难,因为a=kc,无法证明k与k-mn互质

按照上面的步骤,k-mn=xd,k=yd(d>1),只能得出k=mn+xd=yd,这个式子并没有什么卵用

可以自己举几个例子试试,

例如gcd(99,15),99%15=9,9与15互质,可化为gcd(15,9),最终答案为3

而如果用gcd(a,r),转为gcd(99,9),最终答案为9,这就是是因为9=3*3,99=3*33,而3与33不互质

End

蒟蒻的推理到此结束,如有不对的地方还望提出

关于欧几里德算法(gcd)的证明的更多相关文章

  1. 欧几里德算法gcd及其拓展终极解释

    这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解   扩展欧几里德算法-求解不定方程,线性同余方程. 设过s步后两青蛙相遇,则必满足以下等式: (x+m*s)-(y+n ...

  2. 欧几里德算法 GCD

    递归: int gcd(int a,int b) { ?a:gcd(b,a%b); } 非递归: int gcd(int m,int n) { int r; ) { m=n; n=r; } retur ...

  3. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  4. 欧几里德算法及其扩展(推导&&模板)

    有关欧几里德算法整理: 1.一些相关概念: <1>.整除性与约数: ①一个整数可以被另外一个整数整除即为d|a(表示d整除a,通俗的说是a可以被d整除),其含义也可以说成,存在某个整数k, ...

  5. ACM_扩展欧几里德算法

    <pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...

  6. ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)

    为什么老是碰上 扩展欧几里德算法 ( •̀∀•́ )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相 ...

  7. [Python3 练习] 008 欧几里德算法

    题目:写个"欧几里德算法"的小程序 (1) 描述 我知识浅薄,一开始被"欧几里德"的大名唬住了,去搜了一下才知道这就是高中时学过的"辗转相除法&quo ...

  8. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  9. POJ 1061青蛙的约会(拓展欧几里德算法)

    题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...

  10. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

随机推荐

  1. matlab 基本操作

    导入excel 右键excel文件, import data, 选择column vector点击导入即可, 在右侧的workspace就可以看到添加的列变量了 在workspace中右键添加clas ...

  2. ElasticSearch安装和核心概念

    1.ElasticSearch安装 elasticsearch的安装超级easy,解压即用(要事先安装好java环境). 到官网 http://www.elasticsearch.org下载最新版的 ...

  3. CentOS6.x升级MySQL 5.1到5.6

    有一些虚拟机.云主机提供商仍然使用的是老版本的安装套件.预装的应用软件版本很低.有些IDC使用的云服务器,其中MySQL预装版本为老版本5.1.x.而较新的MySQL 5.6版本在性能.功能.安全性等 ...

  4. js中函数声明先提升还是变量先提升

    根据官方书籍<你不知道的javascript>(上卷)中写道: "函数会首先被提升,然后才是变量". 例子: console.log(foo); function fo ...

  5. CAD Import .NET支持AutoCAD DWG 2013

    CADSoftTools发布了CAD Import .NET 9一个新版本.NET开发库,可以提供给开发人员导入AutoCAD DWG.DXF.HPGL.PLT.CGM等格式的功能. 在新版本中,CA ...

  6. centos升级3.10内核到4.4

    为了满足k8s对内核要求,默认Centos 7的内核为3.10建议升级到4.x内核 默认3.10内核升级为4.x内核 rpm -Uvh http://www.elrepo.org/elrepo-rel ...

  7. Js面向对象之观察者模式

    //模拟一个目标可能拥有的一些列依赖 function ObserverList() { this.observerList = []; }; //添加一个观察者 ObserverList.proto ...

  8. 梦织未来Windows驱动编程 第04课 驱动相关的数据结构

  9. HDU3308 线段树区间合并

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 ,简单的线段树区间合并. 线段树的区间合并:一般是要求求最长连续区间,在PushUp()函数中实 ...

  10. POJ 3734 Blocks (线性递推)

    定义ai表示红色和绿色方块中方块数为偶数的颜色有i个,i = 0,1,2. aij表示刷到第j个方块时的方案数,这是一个线性递推关系. 可以构造递推矩阵A,用矩阵快速幂求解. /*********** ...