吴恩达机器学习笔记(七) —— K-means算法
主要内容:
一.K-means算法简介
二.算法过程
三.随机初始化
四.二分K-means
四.K的选择
一.K-means算法简介
1.K-means算法是一种无监督学习算法。所谓无监督式学习,就是输入样本中只有x,没有y,即只有特征,而没有标签,通过这些特征对数据进行整合等操作。而更细化一点地说,K-means算法属于聚类算法。所谓聚类算法,就是根据特征上的相似性,把数据聚集在一起,或者说分成几类。
2.K-means算法作为聚类算法的一种,其工作自然也是“将数据分成几类”,其基本思路是:
1) 首先选择好将数据分成k类,然后随机初始化k个点作为中心点。
2) 对于每一个数据点,选取与之距离最近的中心点作为自己的类别。
3) 当所有数据点都归类完毕后,调整中心点:把中心点重新设置为该类别中所有数据点的中心位置,每一轴都设置为平均值。(所以称为means)
4) 重复以上2)~3)步骤直至数据点的类别不再发生变化。
3.K-means算法从感性上去理解,就是把一堆靠得近的点归到同一个类别中。
二.算法过程
1.一些变量的约定:μ(i)表示第i个中心点,c(i)表示第i个数据点归到哪个中心点。
2.K-means算法的本质就是:移动中心点,使其渐渐地靠近数据的“中心”,即最小化数据点与中心点的距离。即:
3.算法流程:
4.Python代码如下:
# coding:utf-8 from numpy import * def distEclud(vecA, vecB): #计算欧式距离
return sqrt(sum(power(vecA - vecB, 2))) # la.norm(vecA-vecB) def randCent(dataSet, k): # 初始化k个随机簇心
n = shape(dataSet)[1] #特征个数
centroids = mat(zeros((k, n))) # 簇心矩阵k*n
for j in range(n): #特征逐个逐个地分配给这k个簇心。每个特征的取值需要设置在数据集的范围内
minJ = min(dataSet[:, j]) #数据集中该特征的最小值
rangeJ = float(max(dataSet[:, j]) - minJ) #数据集中该特征的跨度
centroids[:, j] = mat(minJ + rangeJ * random.rand(k, 1)) #为k个簇心分配第j个特征,范围需限定在数据集内。
return centroids #返回k个簇心 def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0] #数据个数
clusterAssment = mat(zeros((m, 2))) # 记录每个数据点被分配到的簇,以及到簇心的距离
centroids = createCent(dataSet, k) # 初始化k个随机簇心
clusterChanged = True # 记录一轮中是否有数据点的归属出现变化,如果没有则算法结束
while clusterChanged:
clusterChanged = False
for i in range(m): # 枚举每个数据点,重新分配其簇归属
minDist = inf; minIndex = -1 #记录最近簇心及其距离
for j in range(k): #枚举每个簇心
distJI = distMeas(centroids[j, :], dataSet[i, :]) #计算数据点与簇心的距离
if distJI < minDist: #更新最近簇心
minDist = distJI; minIndex = j
if clusterAssment[i, 0] != minIndex: clusterChanged = True #更新“变化”记录
clusterAssment[i, :] = minIndex, minDist ** 2 #更新数据点的簇归属
print centroids
for cent in range(k): #枚举每个簇心,更新其位置
ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A == cent)[0]] # 得到该簇所有的数据点
centroids[cent, :] = mean(ptsInClust, axis=0) # 将数据点的均值作为簇心的位置
return centroids, clusterAssment # 返回簇心及每个数据点的簇归属
三.随机初始化
由于初始化的中心点对于最后的分类结果影响很大,因而很容易出现:当初始化的中心点不同时,其结果可能千差万别:
因此,为了分类结果更加合理,我们可以多次初始化中心点,即多次运行K-means算法,然后取其中J(c1,c2……,μ1,μ2……)最小的分类结果。
四.二分K-means
1.为了克服K-means算法收敛域局部最小值的问题(缘因对初始簇心的位置敏感),二分k-means出现了。该算法首先将所有点归于一个簇,然后将其一分为二。之后选择其中一个簇继续一分为二。选择的依据就是:该簇的划分是否可以最大程度降低SSE(误差平方和)的值。上述基于SSE的划分过程不断重复,直至簇数达到k为止。
2.伪代码如下:
3.Python代码如下:
'''二分K均值'''
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
centroid0 = mean(dataSet, axis=0).tolist()[0] #创建初始簇心,标号为0
centList = [centroid0] # 创建簇心列表
clusterAssment = mat(zeros((m, 2))) #初始化所有数据点的簇归属(为0)
for j in range(m): # 计算所有数据点与簇心0的距离
clusterAssment[j, 1] = distMeas(mat(centroid0), dataSet[j, :]) ** 2
''''''''''''
while (len(centList) < k): #分裂k-1次,形成k个簇
lowestSSE = inf #初始化最小sse为无限大
for i in range(len(centList)): #枚举已有的簇,尝试将其一分为二
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0],:] #将该簇的数据点提取出来
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) #利用普通k均值将其一分为二
sseSplit = sum(splitClustAss[:, 1]) # 计算划分后该簇的SSE
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0], 1]) #计算该簇之外的数据点的SSE
print "sseSplit, and notSplit: ", sseSplit, sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE: #更新最小总SSE下的划分簇及相关信息
bestCentToSplit = i #被划分的簇
bestNewCents = centroidMat #划分后的两个簇心
bestClustAss = splitClustAss.copy() #划分后簇内数据点的归属及到新簇心的距离
lowestSSE = sseSplit + sseNotSplit #更新最小总SSE
''''''''''''
print 'the bestCentToSplit is: ', bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
centList[bestCentToSplit] = bestNewCents[0, :].tolist()[0] # 一个新簇心的标号为旧簇心的标号,所以将其取代就簇心的位置
centList.append(bestNewCents[1, :].tolist()[0]) # 另一个新簇心加入到簇心列表的尾部,标号重新起
bestClustAss[nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centList) #更新旧簇内数据点的标号
bestClustAss[nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit #同上
clusterAssment[nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0],:] = bestClustAss # 将更新的簇归属统计到总数据上
return mat(centList), clusterAssment
四.K的选择
最后一个问题:既然是K-means,那么这个k应该取多大呢?
一.Elbow method:
假设随着k的增大,cost function j的大小呈现以下的形状:
可以看到,当k=3时,J已经很小了,且再增大k也不能大大地减小J。说明此时k选取3比较合适。
但是,这种“手肘”情况并不常见,更一般的情况是:
此时根本看不出哪里才是“手肘”,所以对此的策略是:实践调研,按实际需求的而定。
吴恩达机器学习笔记(七) —— K-means算法的更多相关文章
- [吴恩达机器学习笔记]14降维3-4PCA算法原理
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.3主成分分析原理Proncipal Component Analysis Problem Formulation 主成分分析( ...
- 吴恩达机器学习笔记58-协同过滤算法(Collaborative Filtering Algorithm)
在之前的基于内容的推荐系统中,对于每一部电影,我们都掌握了可用的特征,使用这些特征训练出了每一个用户的参数.相反地,如果我们拥有用户的参数,我们可以学习得出电影的特征. 但是如果我们既没有用户的参数, ...
- 吴恩达机器学习笔记55-异常检测算法的特征选择(Choosing What Features to Use of Anomaly Detection)
对于异常检测算法,使用特征是至关重要的,下面谈谈如何选择特征: 异常检测假设特征符合高斯分布,如果数据的分布不是高斯分布,异常检测算法也能够工作,但是最好还是将数据转换成高斯分布,例如使用对数函数:
- 吴恩达机器学习笔记50-主成分分析算法(PCA Algorithm)
PCA 减少
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- 吴恩达机器学习笔记47-K均值算法的优化目标、随机初始化与聚类数量的选择(Optimization Objective & Random Initialization & Choosing the Number of Clusters of K-Means Algorithm)
一.K均值算法的优化目标 K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为: 其中
- 吴恩达机器学习笔记51-初始值重建的压缩表示与选择主成分的数量K(Reconstruction from Compressed Representation & Choosing The Number K Of Principal Components)
一.初始值重建的压缩表示 在PCA算法里我们可能需要把1000 维的数据压缩100 维特征,或具有三维数据压缩到一二维表示.所以,如果这是一个压缩算法,应该能回到这个压缩表示,回到原有的高维数据的一种 ...
- [吴恩达机器学习笔记]14降维5-7重建压缩表示/主成分数量选取/PCA应用误区
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 ...
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
随机推荐
- String转Map的工具类
借鉴代码 public class StringToMapUtil { public static Map<String, String> getValue(String param) { ...
- 通过apache,和nginx模块去除html中的空格和tab
最近一个项目中,合作方要求去除html中的空格,不想改代码,所以百度了一下通过apache,和nginx模块去除html中的空格和tab的方案,下面记录下来: 一.nginx nginx可以通过mod ...
- Android中的Telephony学习笔记(2)
上一篇文章中学习了android.provider中Telephony类. 这一篇文章学习android.telephony包中的类,这些类是android提供给上层调用的API. 为监測基本电话信息 ...
- Java排序算法(三):直接插入排序
[基本思想] 关键:在前面已经排好序的序列中找到合适的插入位置 步骤: 1. 从第一个元素開始,该元素能够觉得已经排好序. 2. 取出下一个元素.在已经排好序的元素序列中从后往前扫描进行比較. 3. ...
- 防止vue组件渲染不更新
1.key <el-dialog title="" :visible.sync="dialogVisible" @close="dialogCl ...
- C#命名空间大全详细教程
www.51rgb.com System 命名空间包含了定义数据类型.事件和事件处理程序等基本类: System.Data 命名空间包含了提供数据访问功能的命名空间和类: System.IO 命名空间 ...
- 关于PM的认识
1 我眼中的PM 1.1 人云“一个管理,半个专家”,我说“一个管理,两个专家” 如今,我发现我们不得不面对这样一个现实——角色兼职.我习惯上把项目分为三类:性命攸关的项目(涉及到人身安全的项目,如铁 ...
- 【转载】通过sqlserver日志恢复误删除的数据
如果你已经急的焦头烂额,看到这篇文章的时候,请你换个坐姿,深呼吸几次,静下心来将这篇文章读完,也许你的问题迎刃而解. 我遇到的情况是这样的,网站被植入木马,盗取了我的web.config文件,web. ...
- HDU - 3874 Necklace (线段树 + 离线处理)
欢迎參加--每周六晚的BestCoder(有米! ) Necklace Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 65536/3 ...
- Java实现分布式锁方式
1.数据库乐观锁 2.redis 3.zookeeper