Description

Let us define a regular brackets sequence in the following way:




1. Empty sequence is a regular sequence.

2. If S is a regular sequence, then (S) and [S] are both regular sequences.

3. If A and B are regular sequences, then AB is a regular sequence.



For example, all of the following sequences of characters are regular brackets sequences:




(), [], (()), ([]), ()[], ()[()]



And all of the following character sequences are not:



(, [, ), )(, ([)], ([(]



Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2
... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

题意:给一串括号序列。依照合法括号的定义,加入若干括号,使得序列合法。

典型区间DP。设dp[i][j]为从i到j须要加入最少括号的数目。

dp[i][j] = max{ dp[i][k]+dp[k+1][j] }  (i<=k<j)

假设s[i] == s[j] , dp[i][j] 还要和dp[i+1][j-1]比較。 枚举顺序依照区间长度枚举。

由于要求输出合法序列,就要记录在原序列在哪些位置进行了添加,设c[i][j]为从i到j的 添加括号的位置,假设不须要添加。那么c[i][j] 赋为-1,打印时仅仅需递归打印就可以。

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const int MAX=0x3f3f3f3f;
int n,c[105][105],dp[105][105];
char s[105];
void print(int i,int j) {
if( i>j ) return ;
if( i == j ) {
if(s[i] == '(' || s[i] == ')') printf("()");
else printf("[]");
return ;
}
if( c[i][j] > 0 ) {  // i到j存在添加括号的地方,位置为c[i][j]
print(i,c[i][j]);
print(c[i][j]+1,j);
} else {
if( s[i] == '(' ) {
printf("(");
print(i+1,j-1);
printf(")");
} else {
printf("[");
print(i+1,j-1);
printf("]");
}
}
}
void DP() {  //区间DP
for(int len=2;len<=n;len++)
for(int i=1;i<=n-len+1;i++) {
int j = i+len-1;
for(int k=i;k<j;k++) if( dp[i][j] > dp[i][k]+dp[k+1][j] ) {
dp[i][j] = dp[i][k] + dp[k+1][j];
c[i][j] = k;  // 记录断开的位置
}
if( ( s[i] == '(' && s[j] == ')' || s[i] == '[' && s[j] == ']' ) && dp[i][j] > dp[i+1][j-1] ) {
dp[i][j] = dp[i+1][j-1];
c[i][j] = -1; //i到j不须要断开。由于dp[i+1][j-1]的值更小,上面枚举的k位置都比这个大。所以不再断开
}
}
}
int main()
{
scanf("%s",s+1);
n = strlen(s+1);
memset(c,-1,sizeof(c));
memset(dp,MAX,sizeof(c));
for(int i=1;i<=n;i++) dp[i][i] = 1, dp[i][i-1] = 0; //赋初值
DP();
print(1,n);
printf("\n");
return 0;
}



POJ 1141 Brackets Sequence (区间DP)的更多相关文章

  1. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  2. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  3. poj 1141 Brackets Sequence (区间dp)

    题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...

  4. poj 1141 Brackets Sequence ( 区间dp+输出方案 )

    http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...

  5. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  6. POJ 1141 Brackets Sequence(括号匹配二)

    题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...

  7. POJ 2955 Brackets (区间dp入门)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  8. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  9. Poj 2955 brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7795   Accepted: 4136 Descript ...

随机推荐

  1. centos7 install google-chrome

    important: Google Chrome support for all 32-bit Linux distributions is deprecated from March, 2016. ...

  2. Tomcat自动发布war包

    有两种方法: 1.将项目打成war包,复制到${tomcat.home}\webapps目录下.当tomcat启动时会自动将其解包. 有人说,不能直接将war文件夹直接复制到${tomcat.home ...

  3. spring AOP详解〇

    AOP正在成为软件开发的下一个圣杯.使用AOP,你可以将处理aspect的代码注入主程序,通常主程序的主要目的并不在于处理这些aspect.AOP可以防止代码混乱. 为了理解AOP如何做到这点,考虑一 ...

  4. hdu1595 最短路问题(dijkstra&&spfa)

    find the longest of the shortest Time Limit: 1000/5000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  5. 利用ajax实现数据传输

    AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. AJAX 是与服 ...

  6. NOJ——1624死胡同(胡搞模拟)

    [1624] 死胡同 时间限制: 1000 ms 内存限制: 65535 K 问题描述 一个死胡同由排成一列的 n 个格子组成,编号从 1 到 n .实验室的“猪猪”一开始在1号格子,开始向前走,每步 ...

  7. 洛谷P1469找筷子

    题目描述 经过一段时间的紧张筹备,电脑小组的“RP餐厅”终于开业了,这天,经理LXC接到了一个定餐大单,可把大家乐坏了!员工们齐心协力按要求准备好了套餐正准备派送时,突然碰到一个棘手的问题,筷子!CX ...

  8. 转 C++构造函数、析构函数、虚函数之间的关系

    C++构造函数.析构函数.虚函数之间的关系 1. 如果我们定义了一个构造函数,编译器就不会再为我们生成默认构造函数了.2. 编译器生成的析构函数是非虚的,除非是一个子类,其父类有个虚析构,此时的函数虚 ...

  9. Java后端WebSocket的Tomcat实现 html5 WebSocket 实时聊天

    WebSocket协议被提出,它实现了浏览器与服务器的全双工通信,扩展了浏览器与服务端的通信功能,使服务端也能主动向客户端发送数据.Tomcat7.0.47上才能运行. 需要添加Tomcat里lib目 ...

  10. AC日记——线段树练习5 codevs 4927

    4927 线段树练习5  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 有n个数和5种操作 add a b ...