Description

Let us define a regular brackets sequence in the following way:




1. Empty sequence is a regular sequence.

2. If S is a regular sequence, then (S) and [S] are both regular sequences.

3. If A and B are regular sequences, then AB is a regular sequence.



For example, all of the following sequences of characters are regular brackets sequences:




(), [], (()), ([]), ()[], ()[()]



And all of the following character sequences are not:



(, [, ), )(, ([)], ([(]



Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2
... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

题意:给一串括号序列。依照合法括号的定义,加入若干括号,使得序列合法。

典型区间DP。设dp[i][j]为从i到j须要加入最少括号的数目。

dp[i][j] = max{ dp[i][k]+dp[k+1][j] }  (i<=k<j)

假设s[i] == s[j] , dp[i][j] 还要和dp[i+1][j-1]比較。 枚举顺序依照区间长度枚举。

由于要求输出合法序列,就要记录在原序列在哪些位置进行了添加,设c[i][j]为从i到j的 添加括号的位置,假设不须要添加。那么c[i][j] 赋为-1,打印时仅仅需递归打印就可以。

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const int MAX=0x3f3f3f3f;
int n,c[105][105],dp[105][105];
char s[105];
void print(int i,int j) {
if( i>j ) return ;
if( i == j ) {
if(s[i] == '(' || s[i] == ')') printf("()");
else printf("[]");
return ;
}
if( c[i][j] > 0 ) {  // i到j存在添加括号的地方,位置为c[i][j]
print(i,c[i][j]);
print(c[i][j]+1,j);
} else {
if( s[i] == '(' ) {
printf("(");
print(i+1,j-1);
printf(")");
} else {
printf("[");
print(i+1,j-1);
printf("]");
}
}
}
void DP() {  //区间DP
for(int len=2;len<=n;len++)
for(int i=1;i<=n-len+1;i++) {
int j = i+len-1;
for(int k=i;k<j;k++) if( dp[i][j] > dp[i][k]+dp[k+1][j] ) {
dp[i][j] = dp[i][k] + dp[k+1][j];
c[i][j] = k;  // 记录断开的位置
}
if( ( s[i] == '(' && s[j] == ')' || s[i] == '[' && s[j] == ']' ) && dp[i][j] > dp[i+1][j-1] ) {
dp[i][j] = dp[i+1][j-1];
c[i][j] = -1; //i到j不须要断开。由于dp[i+1][j-1]的值更小,上面枚举的k位置都比这个大。所以不再断开
}
}
}
int main()
{
scanf("%s",s+1);
n = strlen(s+1);
memset(c,-1,sizeof(c));
memset(dp,MAX,sizeof(c));
for(int i=1;i<=n;i++) dp[i][i] = 1, dp[i][i-1] = 0; //赋初值
DP();
print(1,n);
printf("\n");
return 0;
}



POJ 1141 Brackets Sequence (区间DP)的更多相关文章

  1. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  2. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  3. poj 1141 Brackets Sequence (区间dp)

    题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...

  4. poj 1141 Brackets Sequence ( 区间dp+输出方案 )

    http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...

  5. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  6. POJ 1141 Brackets Sequence(括号匹配二)

    题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...

  7. POJ 2955 Brackets (区间dp入门)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  8. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  9. Poj 2955 brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7795   Accepted: 4136 Descript ...

随机推荐

  1. python操redis

    Python操作redis python连接方式:点击 下面介绍详细使用 1.String 操作 redis中的String在在内存中按照一个name对应一个value来存储 set() #在Redi ...

  2. 【Luogu】P1430序列取数(DP)

    题目链接 博弈DP太喵了qwq 设f[i][j]表示剩下区间[i,j]要取,先手最大值 明显我们要从这区间里面拿个最大的 就等价于这段区间的前缀和,我们要给对手留下个最小的 就是f[i][j]=sum ...

  3. cf- 297 < a >--字符串操作技巧

    A. Vitaliy and Pie time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. [USACO07NOV]牛继电器Cow Relays (最短路,DP)

    题目链接 Solution 非正解 似乎比较蛇啊,先个一个部分分做法,最短路+\(DP\). 在求最短路的堆或者队列中存储元素 \(dis_{i,j}\) 代表 \(i\) 这个节点,走了 \(j\) ...

  5. scroll与按钮的位置

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. mongodb window安装学习

    https://blog.csdn.net/u011692780/article/details/81223525 教程:http://www.runoob.com/mongodb/mongodb-t ...

  7. 关于toggle的用法

    //一个关于鼠标点击 切换场景的代码段 $(document).on('click', '.create-advice-elseparm', function () { $('.advice-else ...

  8. js-斐波那切数列

    f(1) = 1; f(2) = 1; f(3) = f(1) + f(2) = 2; f(4) = f(3) + f(2) = 3; f(5) = f(4) + f(3) = 5; f(6) = f ...

  9. linux sed 替换(整行替换,部分替换)、删除delete、新增add、选取

    sed命令行格式为:         sed [-nefri] ‘command’ 输入文本 常用选项:        -n∶使用安静(silent)模式.在一般 sed 的用法中,所有来自 STDI ...

  10. 洛谷——P1588 丢失的牛

    P1588 丢失的牛 题目描述 FJ丢失了他的一头牛,他决定追回他的牛.已知FJ和牛在一条直线上,初始位置分别为x和y,假定牛在原地不动.FJ的行走方式很特别:他每一次可以前进一步.后退一步或者直接走 ...