POJ 1141 Brackets Sequence (区间DP)
Description
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2
... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
Output
Sample Input
([(]
Sample Output
()[()]
题意:给一串括号序列。依照合法括号的定义,加入若干括号,使得序列合法。
典型区间DP。设dp[i][j]为从i到j须要加入最少括号的数目。
dp[i][j] = max{ dp[i][k]+dp[k+1][j] } (i<=k<j)
假设s[i] == s[j] , dp[i][j] 还要和dp[i+1][j-1]比較。 枚举顺序依照区间长度枚举。
由于要求输出合法序列,就要记录在原序列在哪些位置进行了添加,设c[i][j]为从i到j的 添加括号的位置,假设不须要添加。那么c[i][j] 赋为-1,打印时仅仅需递归打印就可以。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const int MAX=0x3f3f3f3f;
int n,c[105][105],dp[105][105];
char s[105];
void print(int i,int j) {
if( i>j ) return ;
if( i == j ) {
if(s[i] == '(' || s[i] == ')') printf("()");
else printf("[]");
return ;
}
if( c[i][j] > 0 ) { // i到j存在添加括号的地方,位置为c[i][j]
print(i,c[i][j]);
print(c[i][j]+1,j);
} else {
if( s[i] == '(' ) {
printf("(");
print(i+1,j-1);
printf(")");
} else {
printf("[");
print(i+1,j-1);
printf("]");
}
}
}
void DP() { //区间DP
for(int len=2;len<=n;len++)
for(int i=1;i<=n-len+1;i++) {
int j = i+len-1;
for(int k=i;k<j;k++) if( dp[i][j] > dp[i][k]+dp[k+1][j] ) {
dp[i][j] = dp[i][k] + dp[k+1][j];
c[i][j] = k; // 记录断开的位置
}
if( ( s[i] == '(' && s[j] == ')' || s[i] == '[' && s[j] == ']' ) && dp[i][j] > dp[i+1][j-1] ) {
dp[i][j] = dp[i+1][j-1];
c[i][j] = -1; //i到j不须要断开。由于dp[i+1][j-1]的值更小,上面枚举的k位置都比这个大。所以不再断开
}
}
}
int main()
{
scanf("%s",s+1);
n = strlen(s+1);
memset(c,-1,sizeof(c));
memset(dp,MAX,sizeof(c));
for(int i=1;i<=n;i++) dp[i][i] = 1, dp[i][i-1] = 0; //赋初值
DP();
print(1,n);
printf("\n");
return 0;
}
POJ 1141 Brackets Sequence (区间DP)的更多相关文章
- POJ 1141 Brackets Sequence(区间DP, DP打印路径)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- poj 1141 Brackets Sequence 区间dp,分块记录
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35049 Accepted: 101 ...
- poj 1141 Brackets Sequence (区间dp)
题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...
- poj 1141 Brackets Sequence ( 区间dp+输出方案 )
http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...
- 区间DP POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29520 Accepted: 840 ...
- POJ 1141 Brackets Sequence(括号匹配二)
题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...
- POJ 2955 Brackets (区间dp入门)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- POJ 1141 Brackets Sequence
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29502 Accepted: 840 ...
- Poj 2955 brackets(区间dp)
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7795 Accepted: 4136 Descript ...
随机推荐
- phpcms调用一个指定的栏目
很多初学者在学习phpcms的时候在模板中都是静态的写导航的url,那样在后期维护的时候可是个巨大的工程啊,所以我在学的时候就想起织梦是能指定调用栏目的url,借鉴了这一想法, {$CATEGORY[ ...
- URAL 1137Bus Routes (dfs)
Z - Bus Routes Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Subm ...
- python ConfigParser 的小技巧
$ cat format.conf [DEFAULT] conn_str = %(dbn)s://%(user)s:%(pw)s@%(host)s:%(port)s/%(db)s dbn = mysq ...
- iOS--自定义相册---对象数组按照时间戳排序
将对象按照时间戳排序,这里典型的一个例子是登录账户的排序:本地客户端可能保存了多个账户信息,在登录窗口用户可以选择已经登陆过的账户直接登录,现在的需求是要时刻让最近登陆过的账户排在前面,对于每个账户, ...
- win 7 取得最高权限
以管理员身份运行cmd,然后输入: net user administrator /active:yes 然后注销,就会看到你原来的用户已经是最高权限的用户了.以后做的操作都是最高权限的操作.
- animation总结
1. animation结束后停在最后一帧 animation-fill-mode : forwards | both; /* 或者 */ animation: anim1 1s linear for ...
- .sh 和 .ksh —— 三种主要的 Shell简介(Korn shell)
和现在的开发语言一样,语法上有些差异! 三种主要的 Shell 与其分身 在大部份的UNIX系统,三种著名且广被支持的shell 是Bourne shell(AT&T shell,在 Linu ...
- Windows上安装DB2——从IBM官网得到90天试用版
我在下面选的90天试用版: https://www.ibm.com/developerworks/cn/downloads/im/db2/ 进入下载页面,选择Windows https://www-0 ...
- java面试题之Thread类中的start()和run()方法有什么区别
start()方法被用来启动新创建的线程,而且start()内部调用了run()方法, 区别: 当你调用run()方法的时候,只会是在原来的线程中调用,没有新的线程启动: start()方法才会启动新 ...
- 标准C程序设计七---72
Linux应用 编程深入 语言编程 标准C程序设计七---经典C11程序设计 以下内容为阅读: <标准C程序设计>(第7版) 作者 ...