Description

Let us define a regular brackets sequence in the following way:




1. Empty sequence is a regular sequence.

2. If S is a regular sequence, then (S) and [S] are both regular sequences.

3. If A and B are regular sequences, then AB is a regular sequence.



For example, all of the following sequences of characters are regular brackets sequences:




(), [], (()), ([]), ()[], ()[()]



And all of the following character sequences are not:



(, [, ), )(, ([)], ([(]



Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2
... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

题意:给一串括号序列。依照合法括号的定义,加入若干括号,使得序列合法。

典型区间DP。设dp[i][j]为从i到j须要加入最少括号的数目。

dp[i][j] = max{ dp[i][k]+dp[k+1][j] }  (i<=k<j)

假设s[i] == s[j] , dp[i][j] 还要和dp[i+1][j-1]比較。 枚举顺序依照区间长度枚举。

由于要求输出合法序列,就要记录在原序列在哪些位置进行了添加,设c[i][j]为从i到j的 添加括号的位置,假设不须要添加。那么c[i][j] 赋为-1,打印时仅仅需递归打印就可以。

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const int MAX=0x3f3f3f3f;
int n,c[105][105],dp[105][105];
char s[105];
void print(int i,int j) {
if( i>j ) return ;
if( i == j ) {
if(s[i] == '(' || s[i] == ')') printf("()");
else printf("[]");
return ;
}
if( c[i][j] > 0 ) {  // i到j存在添加括号的地方,位置为c[i][j]
print(i,c[i][j]);
print(c[i][j]+1,j);
} else {
if( s[i] == '(' ) {
printf("(");
print(i+1,j-1);
printf(")");
} else {
printf("[");
print(i+1,j-1);
printf("]");
}
}
}
void DP() {  //区间DP
for(int len=2;len<=n;len++)
for(int i=1;i<=n-len+1;i++) {
int j = i+len-1;
for(int k=i;k<j;k++) if( dp[i][j] > dp[i][k]+dp[k+1][j] ) {
dp[i][j] = dp[i][k] + dp[k+1][j];
c[i][j] = k;  // 记录断开的位置
}
if( ( s[i] == '(' && s[j] == ')' || s[i] == '[' && s[j] == ']' ) && dp[i][j] > dp[i+1][j-1] ) {
dp[i][j] = dp[i+1][j-1];
c[i][j] = -1; //i到j不须要断开。由于dp[i+1][j-1]的值更小,上面枚举的k位置都比这个大。所以不再断开
}
}
}
int main()
{
scanf("%s",s+1);
n = strlen(s+1);
memset(c,-1,sizeof(c));
memset(dp,MAX,sizeof(c));
for(int i=1;i<=n;i++) dp[i][i] = 1, dp[i][i-1] = 0; //赋初值
DP();
print(1,n);
printf("\n");
return 0;
}



POJ 1141 Brackets Sequence (区间DP)的更多相关文章

  1. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  2. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  3. poj 1141 Brackets Sequence (区间dp)

    题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...

  4. poj 1141 Brackets Sequence ( 区间dp+输出方案 )

    http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...

  5. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  6. POJ 1141 Brackets Sequence(括号匹配二)

    题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...

  7. POJ 2955 Brackets (区间dp入门)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  8. POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29502   Accepted: 840 ...

  9. Poj 2955 brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7795   Accepted: 4136 Descript ...

随机推荐

  1. 移动端(钉钉微服务)webpack配置需要移除hash来解决应用更新后白屏的问题

    钉钉微服务webpack配置调整方案 1: Vue CLI配置修改方法 a. 修改build下webpack.prod.config.js.去掉图中三处hash(.[chunkhash]): b. 修 ...

  2. HDU——1106排序(istringstream的使用、STLvector练习)

    排序 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submiss ...

  3. Editplus注册码,汉化官方版本

    官方认证Edit+简体中文版 https://www.editplus.com/download.html EditPlus注册码在线生成 http://www.jb51.net/tools/edit ...

  4. 关于sudo dpkg-divert –local –rename –add /sbin/initctl导致的开机无图标解决方法

    背景: ubutnu16.04 使用status docker,发现 无法连接到 status: Unable to connect to Upstart: Failed to connect to ...

  5. Django模板遍历字典的方法

    使用Python + Django做Web开发时,有时需要在view中传递一个字典给模板(template),如何在模板中遍历字典呢? 下面介绍两种方法: views.py代码如下: dicts = ...

  6. winform控件大小改变是防止背景重绘导致的闪烁(转载)

    在工作中需要做一个伸缩控件,这个自定义控件继承于Panel.这个伸缩控件分为两个部分,头部是一个自定义组件,伸缩控件的背景为灰色,头部背景要求白色.伸缩控件在点击按钮时会重绘,同时他内部的控件也会重绘 ...

  7. 【BZOJ2286】消耗战(虚树,DFS序,树形DP)

    题意:一棵N个点的树上有若干个关键点,每条边有一个边权,现在要将这些关键点到1的路径全部切断,切断一条边的代价就是边权. 共有M组询问,每组询问有k[i]个关键点,对于每组询问求出完成任务的最小代价. ...

  8. 【CF676D】Theseus and labyrinth(BFS,最短路)

    题意:给定一张N*M的地图,每一格都是一个房间,房间之间有门.每个房间可能有四个门,例如>代表右边只有一个门在右边即只能向右走,L代表左边没有门只能除了左其他都可以走等等.现在给出起点和终点,每 ...

  9. Yii关联查询(转载)

    原文链接:http://keshion.iteye.com/blog/1607994 一.多表关联的配置 在我们使用 AR 执行关联查询之前,我们需要让 AR 知道一个 AR 类是怎样关联到另一个的. ...

  10. UVA - 10050 Hartals

    #include <cstdio> #include <cstring> ]; ]; int main() { int t; scanf("%d", &am ...