题干
Input

Output

Example
Test 1:						Test 2:
3 5
1 2 1 2
2 3 1 3
1 4
3 5 3 10
Tips

译成人话

给n个结点,n-1条无向边。即一棵树。我们需要给这n-1条边赋上0~ n-2不重复的值。mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数。计算下面等式的最大值:

扯淡时间到:

看到题,头皮发麻,怎么想也想不出来,越是想越是觉得人是真的有极限的,于是,我不做人啦,老师!!

另外,我突然找到了一个很不错的视频题解???我大B站无所不有Σ(っ °Д °;)っ

咳~不玩梗了,关于这道题 ,我自己的确是没什么思路,所以,还是感谢郭军凯大佬刘畅大佬的题解,给我这个小蒟蒻指了条明路 :D

首先,我们来看下面这张图:



我们一眼就能看到u1u2这条权值为0的边把这一堆节点分成了左右两堆,那么,根据定义我们能知道,无论是左还是右,只要是同一堆中的节点相互到达,答案一定是0,因为边肯定不经过0嘛,而0又肯定是最小的权。而如果左右两堆中的节点互相到达,那么一定要经过u1u2边也就是0权边,所以它的答案最小是1(不确定,因为我们不知道剩下的边权是多少,但最小一定是1,因为自然数中除了0就是1最小,更多的2,3,4…也是以此类推)

那么下一步,我们肯定是要一个个赋边权,那么怎么赋呢?下一步我们要赋值边权1,能考虑的边有u1v1,u1v2,v1v3,u2v4,u2v5…太多了。那么,我们再看一张图:



如图,我把v1v3这条边赋值为1,那么u1到v1,u1到v2,答案显然都是1,因为路径没经过1这条边,只有v1到v3答案为2,因为经过了1权边。

那么,我把u1v1这条边赋为1呢?



我们会发现,u1到v1,v1到v3,现在都经过了边权为1的边,此时答案都变成了2,显然比原来更大了。据此,我们可以推断,边权1赋给与0权边相邻的边时,答案最大,即最优。当赋边权2,边权3…时也是同理。

那么现在的问题是,与0权边相邻的边有u1v1,u1v2,u2v4,u2v5,这么多,我们该选哪个呢?



我们定义如图数组,在添加边权1之前,对于所有节点,只要路径经过u1u2即0权边,那么答案一定是1,对总答案贡献为siz[u1]*siz[u2];而路径不经过0权边的,跟一开始提到的一样答案都是0,对总答案没有贡献。所以此时在没加1权边时,除开u1u2外,总答案为 siz[u1]*siz[u2];



还是这张图,我们让它变得更一般化一点,u1u2表示为已确定权值的一条边,节点u1可表示为fa[v5][v1],节点u2表示为fa[v1][v5]。

我们的下一步加权选择有u1v1,u1v2,u2v4,u2v5,这里我只拿u1v1,u2v5两条边举例,别的边也是一样的道理,反正都会枚举到的。

如果我把下一个边权加在u1v1上,增大的答案就是1*siz[v1][v5]*siz[v5][v1](我们默认是按自然数从小到大顺序加权,每次权值都差1,故系数是1),再加上原来的dis[v1][fa[v1][v5]];

同理,把下一个边权加在u2v5上,增大的答案也是1*siz[v1][v5]*siz[v5][v1],再加上原来的dis[v5][fa[v5][v1]];

增大的答案都是一样的,所以我们最终比较的是dis[v1][fa[v1][v5]]和dis[v5][fa[v5][v1]]的大小,我们要取较大的那一个。

然后这题的思路就结束了,我们的步骤就是先预处理出siz[ ]和fa[ ][ ],再枚举i,j按公式找到dis[i][j]的最大值(这里要递归来找,因为我们不能保证枚举的顺序正好满足dis也是从小到大的顺序,中间会有空档,所以要递归)

最后的最后,开long long已经是常规操作了吧。

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define ll long long
const int maxn=3005;
int head[maxn],len=0,n;
int root;
ll dis[maxn][maxn],fa[maxn][maxn],siz[maxn][maxn];
//dis[i][j]表示把从i到j间的m条边赋值0~m-1能得到的最大值
//fa[i][j]表示以i为根时,j的父节点
//siz[i][j]表示以i为根时,j节点的子树大小
struct Edge{
int next,to;
}edge[maxn<<1];
void Add(int u,int v){
edge[++len].next=head[u];
edge[len].to=v;
head[u]=len;
}
void Init(int u,int pa){//预处理fa[i][j]和siz[i][j]
siz[root][u]=1;//每节点的初始子树规模都是1,因为它自己就是一个节点 for(int i=head[u];i;i=edge[i].next){
int v=edge[i].to;
if(v==pa) continue;
fa[root][v]=u;//更新v的父节点
Init(v,u);//向子树方向递归
siz[root][u]+=siz[root][v];//更新子树规模:siz[父]+=siz[子]
}
}
long long Update(int u,int v){
if(u==v) return 0;//自己到自己肯定是0
if(dis[u][v]) return dis[u][v];//记忆化,减少重复计算
return (dis[u][v]=max(Update(u,fa[u][v]),Update(v,fa[v][u]))+siz[u][v]*siz[v][u]);//向下递归
}
int main(){
cin>>n;
int x,y;
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
Add(x,y),Add(y,x);
}
for(int i=1;i<=n;i++){
root=i;
Init(i,-1);
}
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
ans=max(Update(i,j),ans);//递归寻找答案的最大值
}
cout<<ans<<endl;
return 0;
}

Xenon's Attack on the Gangs(树规)的更多相关文章

  1. Codeforces 1292C Xenon's Attack on the Gangs 题解

    题目 On another floor of the A.R.C. Markland-N, the young man Simon "Xenon" Jackson, takes a ...

  2. Xenon's Attack on the Gangs,题解

    题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...

  3. CF1292C Xenon's Attack on the Gangs 题解

    传送门 题目描述 输入格式 输出格式 题意翻译 给n个结点,n-1条无向边.即一棵树.我们需要给这n-1条边赋上0~ n-2不重复的值.mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小 ...

  4. 【树形DP】CF 1293E Xenon's Attack on the Gangs

    题目大意 vjudge链接 给n个结点,n-1条无向边.即一棵树. 我们需要给这n-1条边赋上0~ n-2不重复的值. mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数. 计算 ...

  5. CF1292C Xenon's Attack on the Gangs

    题目链接:https://codeforces.com/problemset/problem/1292/C 题意 在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复, ...

  6. [HEOI2015]兔子与樱花 树规+贪心

    鬼能想到是个贪心.明明觉得是树规啊..又完美爆零.. 从叶子节点往上更新,能保证最优解(这块想了半天). 证明:当你的子树上有能删的点而你不删时,可能会对子树的根节点有利,最好的情况是使子树根节点由不 ...

  7. 【9.2校内测试】【开学祭】【exgcd】【树规(背包】【模拟】

    比较裸的$exgcd$的应用? $exgcd$可以算出在$x$和$y$分别是最小正整数时的解.注意在这里因为有$a(x+\frac{b}{d})+b(y-\frac{a}{d})=c$,$d=gcd( ...

  8. HDU 4031 Attack(离线+线段树)(The 36th ACM/ICPC Asia Regional Chengdu Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4031 Problem Description Today is the 10th Annual of ...

  9. 选课 ( dp 树形dp 动态规划 树规)

    和某篇随笔重了?!!?!?!?!?!?不管了留着吧 题目: 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之 ...

随机推荐

  1. Linux RPM命令查询

    查看包是否安装 rpm -q 包名,其中,-q 表示查询 rpm -qa 表示查询所有已经安装的rpm包,a 表示所有 查询软件包详细信息 rpm -qi 包名,其中,-i 表示查询软件信息,-p 表 ...

  2. Java基础(十一)

    一.连接到服务器 telnet是一种用于网络编程的非常强大的测试工具,你可以在命令shell中输入telnet来启动它. 二.实现服务器 服务器循环体: 1.通过输入数据流从客户端接收一个命令. 2. ...

  3. 前端Javascript效果汇总

    1.DOM原生动态加载js <script type="text/javascript"> function loadJs(){ //得到html的头部dom var ...

  4. python 直方图

    import matplotlib.pyplot as plt import numpy as np pop = np.random.randint(0,100,100) pop n,bins,pat ...

  5. 从大厂DevOps工具链部署,看现代产品的生命周期管理

    目录 1. 认识DevOps 1.1. DevOps工具链 1.2. CI 持续集成(Continuous Integration) 1.3. CD(持续交付 & 持续部署) 1.4. Agi ...

  6. redis5.0.7集群搭建

    这里实验的是129.130.240三台服务器6个节点的部署(redis集群最低要6个节点,不然无法创建). 1.压缩包安装 #wget http://download.redis.io/release ...

  7. CSS sprites的定义及使用

    定义:CSS sprites 其实就是把网页中的一些背景图片整合到一张图片文件中,再利用CSS的“background-image”.“background-repeat”.“background-p ...

  8. .Net微服务实战之DevOps篇

    技术只是基础 该系列的两篇文章<.Net微服务实战之技术选型篇>和<.Net微服务实战之技术架构分层篇>都是以技术角度出发描述微服务架构的实施. 如果技术选型篇叙述的是工具,那 ...

  9. cb20a_c++_string类型的查找

    cb20a_c++_string类型的查找s.find(args) //精确匹配,顺序查找, abc, 连续的包含在abcde,或者fabcde;s.rfind(args) //精确匹配.反向查找s. ...

  10. jmeter跨线程组传值和jmeter跨线程组调用

    Jmeter的线程组之间是独立的,用Jmeter做接口测试或者是性能测试时,经常会涉及到多个线程组.那么如何将A线程组返回的变量信息提取后,传递给B,C线程组使用呢?这里以已登录接口返回的access ...