这个难度有些大,有两个policy,一个负责更新策略,另一个负责提供数据,实际这两个policy是一个东西,用policy1跑出一组数据给新的policy2训练,然后policy2跑数据给新的policy3训练,,,,直到policy(N-1)跑数据给新的policyN训练,过程感觉和DQN比较像,但是模型是actor critic 架构,on-policy转换成off-policy,使用剪切策略来限制策略的更新幅度,off-policy的好处是策略更新快,PPO的优化目标是最大化策略的期望回报,同时避免策略更新过大

import gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pygame
import sys
from collections import deque # 定义策略网络
class PolicyNetwork(nn.Module):
def __init__(self):
super(PolicyNetwork, self).__init__()
self.fc = nn.Sequential(
nn.Linear(4, 2),
nn.Tanh(),
nn.Linear(2, 2), # CartPole的动作空间为2
nn.Softmax(dim=-1)
) def forward(self, x):
return self.fc(x) # 定义值网络
class ValueNetwork(nn.Module):
def __init__(self):
super(ValueNetwork, self).__init__()
self.fc = nn.Sequential(
nn.Linear(4, 2),
nn.Tanh(),
nn.Linear(2, 1)
) def forward(self, x):
return self.fc(x) # 经验回放缓冲区
class RolloutBuffer:
def __init__(self):
self.states = []
self.actions = []
self.rewards = []
self.dones = []
self.log_probs = [] def store(self, state, action, reward, done, log_prob):
self.states.append(state)
self.actions.append(action)
self.rewards.append(reward)
self.dones.append(done)
self.log_probs.append(log_prob) def clear(self):
self.states = []
self.actions = []
self.rewards = []
self.dones = []
self.log_probs = [] def get_batch(self):
return (
torch.tensor(self.states, dtype=torch.float),
torch.tensor(self.actions, dtype=torch.long),
torch.tensor(self.rewards, dtype=torch.float),
torch.tensor(self.dones, dtype=torch.bool),
torch.tensor(self.log_probs, dtype=torch.float)
) # PPO更新函数
def ppo_update(policy_net, value_net, optimizer_policy, optimizer_value, buffer, epochs=10, gamma=0.99, clip_param=0.2):
states, actions, rewards, dones, old_log_probs = buffer.get_batch()
returns = []
advantages = []
G = 0
adv = 0
dones = dones.to(torch.int)
# print(dones)
for reward, done, value in zip(reversed(rewards), reversed(dones), reversed(value_net(states))):
if done:
G = 0
adv = 0
G = reward + gamma * G #蒙特卡洛回溯G值
delta = reward + gamma * value.item() * (1 - done) - value.item() #TD差分
# adv = delta + gamma * 0.95 * adv * (1 - done) #
adv = delta + adv*(1-done)
returns.insert(0, G)
advantages.insert(0, adv) returns = torch.tensor(returns, dtype=torch.float) #价值
advantages = torch.tensor(advantages, dtype=torch.float)
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) #add baseline for _ in range(epochs):
action_probs = policy_net(states)
dist = torch.distributions.Categorical(action_probs)
new_log_probs = dist.log_prob(actions)
ratio = (new_log_probs - old_log_probs).exp()
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1.0 - clip_param, 1.0 + clip_param) * advantages
actor_loss = -torch.min(surr1, surr2).mean() optimizer_policy.zero_grad()
actor_loss.backward()
optimizer_policy.step() value_loss = (returns - value_net(states)).pow(2).mean() optimizer_value.zero_grad()
value_loss.backward()
optimizer_value.step() # 初始化环境和模型
env = gym.make('CartPole-v1')
policy_net = PolicyNetwork()
value_net = ValueNetwork()
optimizer_policy = optim.Adam(policy_net.parameters(), lr=3e-4)
optimizer_value = optim.Adam(value_net.parameters(), lr=1e-3)
buffer = RolloutBuffer() # Pygame初始化
pygame.init()
screen = pygame.display.set_mode((600, 400))
clock = pygame.time.Clock() draw_on = False
# 训练循环
state = env.reset()
for episode in range(10000): # 训练轮次
done = False
state = state[0]
step= 0
while not done:
step+=1
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action_probs = policy_net(state_tensor)
dist = torch.distributions.Categorical(action_probs)
action = dist.sample()
log_prob = dist.log_prob(action) next_state, reward, done, _ ,_ = env.step(action.item())
buffer.store(state, action.item(), reward, done, log_prob) state = next_state # 实时显示
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit() if draw_on:
# 清屏并重新绘制
screen.fill((0, 0, 0))
cart_x = int(state[0] * 100 + 300) # 位置转换为屏幕坐标
pygame.draw.rect(screen, (0, 128, 255), (cart_x, 300, 50, 30))
pygame.draw.line(screen, (255, 0, 0), (cart_x + 25, 300), (cart_x + 25 - int(50 * np.sin(state[2])), 300 - int(50 * np.cos(state[2]))), 5)
pygame.display.flip()
clock.tick(600) if step >10000:
draw_on = True
ppo_update(policy_net, value_net, optimizer_policy, optimizer_value, buffer)
buffer.clear()
state = env.reset()
print(f'Episode {episode} completed {step}.') # 结束训练
env.close()
pygame.quit()

运行效果

PPO近端策略优化玩cartpole游戏的更多相关文章

  1. TensorFlow利用A3C算法训练智能体玩CartPole游戏

    本教程讲解如何使用深度强化学习训练一个可以在 CartPole 游戏中获胜的模型.研究人员使用 tf.keras.OpenAI 训练了一个使用「异步优势动作评价」(Asynchronous Advan ...

  2. DRL 教程 | 如何保持运动小车上的旗杆屹立不倒?TensorFlow利用A3C算法训练智能体玩CartPole游戏

    本教程讲解如何使用深度强化学习训练一个可以在 CartPole 游戏中获胜的模型.研究人员使用 tf.keras.OpenAI 训练了一个使用「异步优势动作评价」(Asynchronous Advan ...

  3. 适合码农工作时玩的游戏:Scrum

    适合码农工作时玩的游戏:Scrum 昨天遇到一个来自微软的面试者,在面试的最后,我简单介绍了一下我们团队使用一周一次的 Scrum 来做项目管理.他回答说:” 我在微软也用 Scrum,不过我们一周两 ...

  4. 玩QQ游戏,见到好几个图像是美女的QQ,就不始玩

    玩QQ游戏,见到好几个图像是美女的QQ,光占坑就是不开始玩 加了一个,发现是传播不良网站的QQ 聊天还是自动的 估计是利用webqq写的程序,也就那几句话来回重复,让你去注册网站什么 可以加这个Q去体 ...

  5. 使用PS3手柄在PC玩Unity3D游戏

    PS3手柄玩Unity游戏 今天把公司的PS3手柄接到PC上,想用手柄试一下玩赛车的感觉,老感觉用键盘按键玩的不爽. 把PS3的手柄接到PC上之后,系统提示正在安装驱动--,百度找资料,如何在PC上使 ...

  6. 伯克利、OpenAI等提出基于模型的元策略优化强化学习

    基于模型的强化学习方法数据效率高,前景可观.本文提出了一种基于模型的元策略强化学习方法,实践证明,该方法比以前基于模型的方法更能够应对模型缺陷,还能取得与无模型方法相近的性能. 引言 强化学习领域近期 ...

  7. 用python玩推理游戏还能掌握基础知识点,有趣又充实,你不试试吗?

    可能更多的人依然还在苦苦的学python各种知识点,但其实同样很多人,玩着游戏就把python学会了.     用python玩推理游戏,是这份python教程中的12个游戏的其中之一. 有关这份Py ...

  8. Linux系统中有趣的命令(可以玩小游戏)

    Linux系统中有趣的命令(可以玩小游戏) 前言 最近,我在看一些关于Linux系统的内容,这里面的内容是真的越学越枯燥,果然学习的过程还是不容易的.记得前几个月初学Linux时,有时候就会碰到小彩蛋 ...

  9. Bert不完全手册3. Bert训练策略优化!RoBERTa & SpanBERT

    之前看过一条评论说Bert提出了很好的双向语言模型的预训练以及下游迁移的框架,但是它提出的各种训练方式槽点较多,或多或少都有优化的空间.这一章就训练方案的改良,我们来聊聊RoBERTa和SpanBER ...

  10. 策略梯度训练cartpole小游戏

    我原来已经安装了anaconda,在此基础上进入cmd进行pip install tensorflow和pip install gym就可以了. 在win10的pycharm做的. policy_gr ...

随机推荐

  1. #dp#洛谷 3244 [HNOI2015]落忆枫音

    题目 分析 每个有入度的点可以选择任意一个父节点组成一棵树,那么原来的答案就是 \(\prod_{i=2}^ndeg[i]\) 现在多了一条边,如果边的终点是1或者它是一个自环那么可以不用管这条边. ...

  2. 使用OHOS SDK构建assimp

    参照OHOS IDE和SDK的安装方法配置好开发环境. 从github下载源码. 执行如下命令: git clone https://github.com/assimp/assimp.git 进入源码 ...

  3. OpenHarmony社区运营报告(2023年3月)

      本月快讯 • <OpenHarmony 2022年度运营报告>于3月正式发布,2022年OpenAtom OpenHarmony(以下简称"OpenHarmony" ...

  4. IE8页面失去焦点,动态删除element

    当页面失去焦点(切换到其他标签页 / 切换到其他软件),触发失焦事件,然后动态删除element 兼容IE8 if(window.ActiveXObject){ window.attachEvent( ...

  5. k8s 深入篇———— docker 是什么[一]

    前言 简单的整理一下一些基本概念. 正文 简单运行一个容器: 创建一个容器: docker run -it busybox /bin/bash 然后看下进程: ps -ef 做了一个障眼法,使用的是p ...

  6. 重新整理数据结构与算法(c#)——KMP破解[二十七]

    前言 很多人把KMP和暴力破解分开,其实KMP就是暴力破解,整个高大上的名字,难道还不是去试错匹配吗? KMP是这样子的,比如说: 绿色部分是我要匹配的. 按照一般写法是这样子的: ABABA 去匹配 ...

  7. 力扣610(MySQL)-判断三角形(简单)

    题目: 表: Triangle 写一个SQL查询,每三个线段报告它们是否可以形成一个三角形. 以 任意顺序 返回结果表. 查询结果格式如下所示. 示例1:  解题思路: 判断是否形成三角形的准则是:两 ...

  8. Koordinator v0.7: 为任务调度领域注入新活力

    简介: 在这个版本中着重建设了机器学习.大数据场景需要的任务调度能力,例如 Coscheduling.ElasticQuota 和精细化的 GPU 共享调度能力.并在调度问题诊断分析方面得到了增强,重 ...

  9. Serverless 架构下的 AI 应用开发:入门、实战与性能优化

    简介: 本章通过对 Serverless 架构概念的探索,对 Serverless 架构的优势与价值.挑战与困境进行分析,以及 Serverless 架构应用场景的分享,为读者介绍 Serverles ...

  10. 深入解读 Flink SQL 1.13

    简介: Apache Flink 社区 5 月 22 日北京站 Meetup 分享内容整理,深入解读 Flink SQL 1.13 中 5 个 FLIP 的实用更新和重要改进. 本文由社区志愿者陈政羽 ...