题意:

给出b,d,n,求$\lfloor(\frac{b+\sqrt{d}}{2})^n\rfloor \mod 999999999999999989$(原题是7528443412579576937)。

$n\leq 10^{18}$

$0<b^2\leq d<(b+1)^2\leq 10^{18}$

$b \mod 2=1$

$d \mod 4=1$

对于20%的数据有$b=1,d=5$

题解:

我是不知道这题跟字符串有什么关系。。。

场上有40%的数据是$n\leq 5$然而我们都没搞出来。。。
本质是发现性质然后乱搞。。。(这场数学竞赛的本质)

观察式子$(\frac{b+\sqrt{d}}{2})^n$,发现他是一个很像共轭根式的东西,那可以把另一半搞出来,得到

$(\frac{b+\sqrt{d}}{2})^n+(\frac{b-\sqrt{d}}{2})^n$;

显然这个东西一定是整数,不妨设个通项$a_n=(\frac{b+\sqrt{d}}{2})^n+(\frac{b-\sqrt{d}}{2})^n$,则答案就是$a_n-(\frac{b-\sqrt{d}}{2})^n$;

然后我们可以通过一些黑科技用通项把递推式还原出来:把两个共轭根式看成特征方程的两个解,再通过韦达定理就可以把原来的系数解出来。。。

有兴趣的同学可以自己算一下,这里算出来特征方程是$x^2-bx+\frac{b^2-d}{4}=0$,那么还原出来递推式就是

$a_n=b\times a_{n-1}+\frac{d-b^2}{4}\times a_{n-2}$,其中$a_0=2,a_1=b$

所以可以用矩阵快速乘来搞定数列,再考虑后面的$(\frac{b-\sqrt{d}}{2})^n$;

由于数据有$b^2\leq d<(b+1)^2$或$b=1,d=5$,所以$(\frac{b-\sqrt{d}}{2})^n∈(-1,0]$,当且仅当$d≠b^2$且$n$为偶数时要把答案减一。

时间复杂度$O(log^2n)$,但是原题模数爆longlong,所以要手写快速乘。。。

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define eps 1e-4
#define mod 999999999999999989ll
using namespace std;
typedef unsigned long long ull;
struct sq{
ull a[][];
sq(){
a[][]=a[][]=a[][]=a[][]=;
}
void init(){
a[][]=a[][]=;
}
}a,ans;
ull calc(ull x,ull y){
ull ret=;
for(;y;y>>=,x=(x+x>mod)?x+x-mod:x+x){
if(y&)ret=(ret+x>mod)?ret+x-mod:ret+x;
}
return ret;
}
sq operator *(const sq a,const sq b){
sq ret;
for(int i=;i<;i++)for(int j=;j<;j++)for(int k=;k<;k++){
ret.a[i][j]=(ret.a[i][j]+calc(a.a[i][k],b.a[k][j]))%mod;
}
return ret;
}
sq pw(sq x,ull y){
sq ret;
ret.init();
for(;y;y>>=,x=x*x){
if(y&)ret=ret*x;
}
return ret;
}
ull b,d,n;
int main(){
scanf("%llu %llu %llu",&b,&d,&n);
a.a[][]=;
a.a[][]=(d-b*b)/;
a.a[][]=b;
ans.a[][]=;
ans.a[][]=b;
ans=ans*pw(a,n);
if(n%==&&d!=b*b)ans.a[][]--;
printf("%llu",ans.a[][]);
return ;
}

【BZOJ4002】[JLOI2015]有意义的字符串 - 矩阵乘法的更多相关文章

  1. [BZOJ4002][JLOI2015]有意义的字符串-[快速乘法+矩阵乘法]

    Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\fra ...

  2. BZOJ 4002--有意义的字符串(矩阵乘法)

    4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 963  Solved: 416[Submit][Sta ...

  3. BZOJ4002 [JLOI2015]有意义的字符串

    据说这两场加起来只要170= =而这是最简单的题目了QAQ 看到$(\frac {b + \sqrt {d} } {2} )^n$,第一反应是共轭根式$(\frac {b - \sqrt {d} } ...

  4. bzoj4002 [JLOI2015]有意义的字符串 快速幂

    Description B 君有两个好朋友,他们叫宁宁和冉冉. 有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求((b+sqrt(D)/2)^N的整数部分,请输出结果 Mod 752844341 ...

  5. bzoj4002 [JLOI2015]有意义的字符串 特征根+矩阵快速幂

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4002 题解 神仙题. 根据下面的一个提示: \[ b^2 \leq d \leq (b+1)^ ...

  6. BZOJ4002 [JLOI2015]有意义的字符串 【数学 + 矩乘】

    题目链接 BZOJ4002 题解 容易想到\(\frac{b + \sqrt{d}}{2}\)是二次函数\(x^2 - bx + \frac{b^2 - d}{4} = 0\)的其中一根 那么就有 \ ...

  7. BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法

    BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...

  8. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  9. 【BZOJ4002】[JLOI2015]有意义的字符串 数学

    [BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...

随机推荐

  1. sklearn学习8-----GridSearchCV(自动调参)

    一.GridSearchCV介绍: 自动调参,适合小数据集.相当于写一堆循环,自己设定参数列表,一个一个试,找到最合适的参数.数据量大可以使用快速调优的方法-----坐标下降[贪心,拿当前对模型影响最 ...

  2. Extjs win

    //创建window var win = Ext.create("Ext.window.Window", { id: "myWin", title: " ...

  3. bitset优化背包

    题目:https://agc020.contest.atcoder.jp/tasks/agc020_c 回忆下一题,是零一背包,主要的做法就是凑出最接近sum/2的价值,然后发现现在的背包的容量是20 ...

  4. Python3的URL编码解码

    前言 博主最近在用python3练习一些爬虫脚本的时候,发现一些url的编码问题,在浏览器提交请求api时,如果url中包含汉子,就会被自动编码掉.呈现的结果是 ==> %xx%xx%xx.如果 ...

  5. 【【henuacm2016级暑期训练】动态规划专题 L】Civilization

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 给一个森林. 就是由很多棵树组成.. 然后会询问你其中一棵树的最长链. 初始状态的最长链可以用两遍dfs分别找最长路得到. 然后要求 ...

  6. Java基础学习总结(55)——java8新特性:stream

    java作为开发语言中的元老已经度过了很多年,最新的java8为我们带来了一些新特性,这些特性可以在以后的工作中为我们的开发提供更多的便捷,现在就让我们看看最新的函数式编程风格怎么在实际的开发中使用. ...

  7. [Angular] Set Metadata in HTTP Headers with Angular HttpHeaders

    Besides sending (or requesting) the actual data to the server API, there’s also often the need to se ...

  8. Android学习JNI,使用JNI实现字符串加密

    本节学习使用C语言加密字符串,大家都知道使用JAVA实现的加密都能够反编译的,而使用C写的加密是非常难被反编译的.所以我们使用JNI学习怎样使用C实现对字符串的加密. 首先:我们实现一个界面 布局文件 ...

  9. Scrapy研究探索(六)——自己主动爬取网页之II(CrawlSpider)

    原创,转载注明:http://blog.csdn.net/u012150179/article/details/34913315 一.目的. 在教程(二)(http://blog.csdn.net/u ...

  10. bzoj2734【HNOI2012】集合选数

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 831  Solved: 487 [Submit][Stat ...