Physics Experiment
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1031   Accepted: 365   Special Judge

Description

Simon is doing a physics experiment with N identical balls with the same radius of R centimeters. Before the experiment, all N balls are fastened within a vertical tube one by one and the lowest point of the lowest ball is H meters
above the ground. At beginning of the experiment, (at second 0), the first ball is released and falls down due to the gravity. After that, the balls are released one by one in every second until all balls have been released. When a ball hits the ground, it
will bounce back with the same speed as it hits the ground. When two balls hit each other, they with exchange their velocities (both speed and direction).

Simon wants to know where are the N balls after T seconds. Can you help him?

In this problem, you can assume that the gravity is constant: g = 10 m/s2.

Input

The first line of the input contains one integer C (C ≤ 20) indicating the number of test cases. Each of the following lines contains four integers NHRT.

1≤ N ≤ 100.

1≤ H ≤ 10000

1≤ R ≤ 100

1≤ T ≤ 10000

Output

For each test case, your program should output N real numbers indicating the height in meters of the lowest point of each ball separated by a single space in a single line. Each number should be rounded to 2 digit after the decimal point.

Sample Input

2
1 10 10 100
2 10 10 100

Sample Output

4.95
4.95 10.20

Source

/*
** Problem: POJ3684
** Status: Accepted
** Running Time: 0ms
** Author: Changmu
**
** 题意:算是我的第一道物理题吧,题意是N个球叠放在一起,每隔一秒最下边的球
** 就掉落下来,给定最以下球的底的高度,求T秒后每一个球的底的离地高度,g=10m/s^2.
**
** 题解:因为碰撞时两个球的速度交换了。实际上能够看做两个球互相穿越了彼此。但
** 又因为球的顺序不会变。所以求得的结果排序后就是答案。
*/ #include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm> #define maxn 105
const double g = 10.0; int N, H, R, T;
double Y[maxn]; double cal(int k) {
if(k < 0) return H;
double t = (double)sqrt(2.0 * H / g);
int m = (int)(k / t);
if(m & 1) {
double t1 = (m + 1) * t - k;
return H - g * t1 * t1 / 2;
} else {
double t1 = k - m * t;
return H - g * t1 * t1 / 2;
}
} int main() {
int t, i;
scanf("%d", &t);
while(t--) {
scanf("%d%d%d%d", &N, &H, &R, &T);
for(i = 0; i < N; ++i)
Y[i] = cal(T - i);
std::sort(Y, Y + N);
for(i = 0; i < N; ++i)
printf("%.2lf%c", Y[i] + 2.0*R*i/100.0, i==N-1?'\n':' ');
}
return 0;
}

POJ3684 Physics Experiment 【物理】的更多相关文章

  1. [POJ3684]Physics Experiment

      Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1363   Accepted: 476   Special Judge ...

  2. poj 3684 Physics Experiment(数学,物理)

    Description Simon ), the first ball is released and falls down due to the gravity. After that, the b ...

  3. HDU 5826 physics(物理)

     physics(物理) Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)   D ...

  4. POJ 3684 Physics Experiment(弹性碰撞)

    Physics Experiment Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2936   Accepted: 104 ...

  5. poj 3684 Physics Experiment 弹性碰撞

    Physics Experiment Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1489   Accepted: 509 ...

  6. Physics Experiment(POJ 3684)

    原题如下: Physics Experiment Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3583   Accepte ...

  7. Physics Experiment 弹性碰撞 [POJ3684]

    题意 有一个竖直的管子内有n个小球,小球的半径为r,最下面的小球距离地面h高度,让小球每隔一秒自由下落一个,小球与地面,小球与小球之间可视为弹性碰撞,让求T时间后这些小球的分布 Input The f ...

  8. Greedy:Physics Experiment(弹性碰撞模型)(POJ 3848)

    物理实验 题目大意:有一个与地面垂直的管子,管口与地面相距H,管子里面有很多弹性球,从t=0时,第一个球从管口求开始下落,然后每1s就会又有球从球当前位置开始下落,球碰到地面原速返回,球与球之间相碰会 ...

  9. POJ 3684 Physics Experiment

    和蚂蚁问题类似. #include<cstdio> #include<cstring> #include<cmath> #include<vector> ...

随机推荐

  1. BA-siemens-apogee总线不稳定解决方法

    状况一:BLN下的火车头在线,但是下面的模块(包括UEC或者PPM)全部掉线 尝试方法: 使用挨个DDC箱断线的方法测试总线是否上线(可以解决由于总线短路引起的总线故障,施工中总线压冷压端子的话就不容 ...

  2. spring是怎样管理mybatis的及注入mybatis mapper bean的

    1.spring启动mybatis的两个重要类:SqlSessionFactoryBean和MapperFactoryBean,这两个类都是org.mybatis.spring jar包的. 是用来启 ...

  3. exceptional c++ 读书笔记 一 . vector 的使用

        一. at() 与 operator[] void f(vector<int>& v) { v[0]; v.at(0); } 对于 vector 中的元素的随机访问有两种方 ...

  4. 定时任务为什么不用Timer

    在做定时任务的时候,有的同学可能能会用到Timer这个定时任务的辅助类, 可是使用它会有潜在的风险,风险例如以下, (1)时间计算不准确问题     由于Timer是以绝对时间计算定时任务的,会受到系 ...

  5. Android应用之——自己定义控件ToggleButton

    我们经常会看到非常多优秀的app上面都有一些非常美丽的控件,用户体验非常好.比方togglebutton就是一个非常好的样例,IOS系统以下那个精致的togglebutton现在在android以下也 ...

  6. mysql事务的开启

    mysql事务的开启 对于一个MYSQL数据库(InnoDB),事务的开启与提交模式无非下面这两种情况: 1>若参数autocommit=0,事务则在用户本次对数据进行操作时自动开启,在用户执行 ...

  7. [MySQL] 统计函数记录

    时间段统计========== 按年汇总,统计:select sum(mymoney) as totalmoney, count(*) as sheets from mytable group by ...

  8. TLP电源管理

    笔记本电脑电池坏了, 换了块电池, 顺手装了一下这个电源管理软件.   https://linrunner.de/en/tlp/docs/tlp-linux-advanced-power-manage ...

  9. Codeforces 993A. Two Squares(暴力求解)

    解题思路(暴力解法) 平行于x轴的正方形和与x轴成45度倾斜的正方形相交的点中必定有整数点.即若两正方形相交,必定存在整数i,j,使(i,j)同时属于两个正方形. 我们把两个正方形中的整数点都找出来, ...

  10. Lucene倒排索引结构及关系