还好$QwQ$


思路:矩阵快速幂

提交:1次

题解:

如图:

注意$n,m$如果小于$k$就不要快速幂了,直接算就行、。。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ull unsigned long long
#define ll long long
#define R register ll
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs;
namespace Luitaryi {
const int N=;
int k,mod,b[N],c[N];
ll n,m,sumn,summ,sum[N];
ll ans[N],s[N],a[N][N],mem[N][N];
inline void mul(ll a[][N],ll b[][N]) {
R tmp[N][N]; memset(tmp,,sizeof(tmp));
for(R i=;i<=k+;++i) for(R l=;l<=k+;++l) for(R j=;j<=k+;++j)
tmp[i][j]=(tmp[i][j]+a[i][l]*b[l][j])%mod;
memcpy(a,tmp,sizeof(tmp));
}
inline void qpow(ll p) {
R ret[N][N]; memset(ret,,sizeof(ret));
for(R i=;i<=k+;++i) ret[i][i]=;
for(;p;p>>=,mul(a,a)) if(p&) mul(ret,a);
memcpy(a,ret,sizeof(a));
}
inline void main() {
k=g(); for(R i=;i<=k;i++) b[i]=g();
for(R i=;i<=k;++i) c[i]=g();
m=g()-k-,n=g()-k,mod=g();
const int M=mod;
for(R i=;i<=k;++i) sum[i]=(b[i]+sum[i-])%M;
for(R i=;i<=k;++i) s[i]=b[i]%M; s[k+]=sum[k]%M;
for(R i=;i<k;++i) a[i+][i]=;
for(R i=;i<=k;++i) a[i][k]=a[i][k+]=c[k-i+]%M; a[k+][k+]=;
if(n<=) return (void)printf("%lld\n",((sum[k+n-]-sum[k+m-])%M+M)%M);
memcpy(mem,a,sizeof(a));
qpow(n); for(R i=;i<=k+;++i) for(R j=;j<=k+;++j) ans[j]=(ans[j]+s[i]*a[i][j])%M; sumn=ans[k+];
if(m<=) return (void)printf("%lld\n",((sumn-sum[k+m])%M+M)%M);
memset(ans,,sizeof(ans)); memcpy(a,mem,sizeof(a));
qpow(m); for(R i=;i<=k+;++i) for(R j=;j<=k+;++j) ans[j]=(ans[j]+s[i]*a[i][j])%M; summ=ans[k+];
printf("%lld\n",((sumn-summ)%M+M)%M);
}
}
signed main() {
Luitaryi::main();
return ;
}

2019.07.21

P2461 [SDOI2008]递归数列 矩阵乘法+构造的更多相关文章

  1. bzoj 3231 [Sdoi2008]递归数列——矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...

  2. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  3. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  4. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  5. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  6. 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造

    一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...

  7. bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 裸矩阵乘法. 代码如下: #include<iostream> #incl ...

  8. P2461 [SDOI2008]递归数列

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj 和 cj ...

  9. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

随机推荐

  1. python学习-23 函数

    函数 1.函数分为:数学定义的函数和编程语言中的函数 例如: - 数学定义的函数:y=2*x+1 - 编程语言的函数: def test(x): x += 1 return x def  :定义函数的 ...

  2. 模糊查询库的存储过程(SQLServer)

    --查询带有自己需要内容的存储过程 SELECT ROUTINE_NAME, ROUTINE_DEFINITION FROM INFORMATION_SCHEMA.ROUTINES WHERE ROU ...

  3. 判断pdf文件是否正常可用

    之前在下载港交所的文件的时候会碰到有些文件异常的情况,文件下载下来,但是不能打开.查到其他的方法不是判断错误就是很麻烦.   整理出一个非常简单的方法,将文件以二进制方式打开,然后判断文件的开头是否符 ...

  4. poj 2406 求最短重复字串

    题解: KMP中next数组的巧妙运用.在这里我们假设这个字符串的长度是len,那么如果len可以被len-next[len]整除的话,我们就可以说len-next[len]就是那个最短子串的长度为什 ...

  5. Java MergeSort

    Java MergeSort /** * <html> * <body> * <P> Copyright 1994-2018 JasonInternational ...

  6. [APB VNext 笔记] UI

    一直想给我做的服务写UI.但苦于现在ABPVNext框架对SPA支持不好.只好先放弃VUE.先弄个UI在说.ABPVNext中的框架都是用Helper封装好的Label.不知道怎么使用,于是翻源代码. ...

  7. 十三、Vue中的computed属性

    以下抄自https://www.cnblogs.com/gunelark/p/8492468.html 看了网上很多资料,对vue的computed讲解自己看的都不是很清晰,今天忙里抽闲,和同事们又闲 ...

  8. INTEL_BIOS 编译—for-ATOM_E3800

    INTEL_BIOS 编译—for-ATOM_E3800 ======================================================================= ...

  9. SIP:100rel 扩展

    SIP:100rel 扩展 100rel扩展即是对中间状态响应的确认(即1xx的响应码).原先在sip里,只有针对invite请求的200ok响应才会有ack,那么当中间状态响应携带重要的会话参数信息 ...

  10. 使用zrender.js绘制体温单(1)

    之前公司请外包做了一个体温单使用的zrender.js 但是代码比较复杂维护性比较低再加上自己技术也不行 最近闲下来的时候看了一下zrender的官网慢慢的摸索并读了下之前的代码,感觉实际并不难,就自 ...