还好$QwQ$


思路:矩阵快速幂

提交:1次

题解:

如图:

注意$n,m$如果小于$k$就不要快速幂了,直接算就行、。。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ull unsigned long long
#define ll long long
#define R register ll
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs;
namespace Luitaryi {
const int N=;
int k,mod,b[N],c[N];
ll n,m,sumn,summ,sum[N];
ll ans[N],s[N],a[N][N],mem[N][N];
inline void mul(ll a[][N],ll b[][N]) {
R tmp[N][N]; memset(tmp,,sizeof(tmp));
for(R i=;i<=k+;++i) for(R l=;l<=k+;++l) for(R j=;j<=k+;++j)
tmp[i][j]=(tmp[i][j]+a[i][l]*b[l][j])%mod;
memcpy(a,tmp,sizeof(tmp));
}
inline void qpow(ll p) {
R ret[N][N]; memset(ret,,sizeof(ret));
for(R i=;i<=k+;++i) ret[i][i]=;
for(;p;p>>=,mul(a,a)) if(p&) mul(ret,a);
memcpy(a,ret,sizeof(a));
}
inline void main() {
k=g(); for(R i=;i<=k;i++) b[i]=g();
for(R i=;i<=k;++i) c[i]=g();
m=g()-k-,n=g()-k,mod=g();
const int M=mod;
for(R i=;i<=k;++i) sum[i]=(b[i]+sum[i-])%M;
for(R i=;i<=k;++i) s[i]=b[i]%M; s[k+]=sum[k]%M;
for(R i=;i<k;++i) a[i+][i]=;
for(R i=;i<=k;++i) a[i][k]=a[i][k+]=c[k-i+]%M; a[k+][k+]=;
if(n<=) return (void)printf("%lld\n",((sum[k+n-]-sum[k+m-])%M+M)%M);
memcpy(mem,a,sizeof(a));
qpow(n); for(R i=;i<=k+;++i) for(R j=;j<=k+;++j) ans[j]=(ans[j]+s[i]*a[i][j])%M; sumn=ans[k+];
if(m<=) return (void)printf("%lld\n",((sumn-sum[k+m])%M+M)%M);
memset(ans,,sizeof(ans)); memcpy(a,mem,sizeof(a));
qpow(m); for(R i=;i<=k+;++i) for(R j=;j<=k+;++j) ans[j]=(ans[j]+s[i]*a[i][j])%M; summ=ans[k+];
printf("%lld\n",((sumn-summ)%M+M)%M);
}
}
signed main() {
Luitaryi::main();
return ;
}

2019.07.21

P2461 [SDOI2008]递归数列 矩阵乘法+构造的更多相关文章

  1. bzoj 3231 [Sdoi2008]递归数列——矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...

  2. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  3. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  4. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  5. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  6. 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造

    一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...

  7. bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 裸矩阵乘法. 代码如下: #include<iostream> #incl ...

  8. P2461 [SDOI2008]递归数列

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj 和 cj ...

  9. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

随机推荐

  1. Rabbitmq C++客户端 Rabbitmq Client

    概述 最近项目消息队列服务选用了rabbitmq,server端用的C++开发的,于是需要开发rabbitmq的c++客户端,国际惯例先百度了一圈,然后github搜了一圈,竟然发现排名靠前的需要付费 ...

  2. 20190705-Python数据驱动之DDT

    DDT ddt 是第三方模块,需安装, pip install ddt DDT包含的装饰器 包含一个类装饰器@ddt和两个方法装饰器@data和@file_data 通常情况下,@data中的数据按照 ...

  3. 『Django』第N+1节: Django自带的认证系统 - auth

    个人网站: lipeiguan.top 以后会慢慢转移到个人网站, 欢迎大家收藏^ . ^ 写在前面 我们在开发一个网站的时候, 经常需要实现网站的用户系统. 这个时候我们需要实现用户注册.用户登录. ...

  4. scratch少儿编程——03、动作:运动的开始,游戏的基础。

    各位小伙伴大家好: 从这一期开始我们来学Scratch的具体操作. 第一季我们会从每一个脚本模块开始.一个程序块一个程序块去操作,感受它的效果. 今天我们来一起学习程序区的脚本类动作模块的指令. 动作 ...

  5. Linux下/etc/login.defs文件

    /etc/login.defs文件定义了与/etc/password和/etc/shadow配套的用户限制设定.这个文件是需要的,缺失并不会影响系统的使用,但是也许会产生意想不到的错误. 如果/etc ...

  6. hdu 6197 array array array LIS

    正反跑一次LIS,取最大的长度,如果长度大于n-k就满足条件. ac代码: #include <cstdio> #include <cstring> #include < ...

  7. Python考试_第一次

    python基础数据类型考试题 考试时间:两个半小时 满分100分(80分以上包含80分及格) 一,基础题. 1. 简述变量命名规范(3分) 答:(1) 变量为数字,字母以及下划线的任意组合,且不能以 ...

  8. 创建多线程时,为何创建后需要Sleep?

    后面的线程用到了前面线程初始的结构,sleep一下只是做到了使前一个线程初始化完成后后一个线程才开始运行.但这样不严格,需要同步机制.在么多个线程都要用的数据结构不要放到子线程内部去初始化,程序启动时 ...

  9. sql sever 查询用户所有的表和各个表数据量

    和oracle有区别, 需要关联表 SELECT A.NAME ,B.ROWS  FROM sysobjects  A JOIN sysindexes B ON A.id = B.id WHERE A ...

  10. Server SAN

    http://blog.sina.com.cn/s/blog_5946bd590102veni.html http://blog.sina.com.cn/s/blog_5946bd590102vemm ...