Harris、Shi-Tomasi和亚像素角点都是角点,隶属于特征点这个大类(特征点可以分为边缘、角点、斑点).

一、Harris角点检测是一种直接基于灰度图像的角点提取算法,稳定性较高,但是也可能出现有用信息丢失的情况。
函数:cornerHarris()
void cv::cornerHarris ( InputArray  src,  //需要为8位单通道
    OutputArray  dst,  //结果
    int  blockSize, //领域大小
    int  ksize, //Sobel孔径大小
    double  k, //Harris参数
    int  borderType = BORDER_DEFAULT 
  )    

Harris corner detector.

The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and cornerEigenValsAndVecs , for each pixel (x, y) it calculates a 2\times2 gradient covariance matrix M^{(x,y)} over a \texttt{blockSize} \times \texttt{blockSize} neighborhood. Then, it computes the following characteristic:

(特征点计算方法)

 

Corners in the image can be found as the local maxima of this response map.

Parameters
src Input single-channel 8-bit or floating-point image.
dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same size as src .
blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ).
ksize Aperture parameter for the Sobel operator.
k Harris detector free parameter. See the formula below.
borderType Pixel extrapolation method. See cv::BorderTypes.
调用:
 
    Mat srcGray ,,.);
    .,,THRESH_BINARY);
    imshow();
lena的结果:
二、Shi-Tomasi角点
一般认为是Harris的改进,因为当时提出的论文叫做《Good Features to Track》,所以这种角点再OpenCV中叫做goodFeatures
函数:goodFeaturesToTrack()
void cv::goodFeaturesToTrack ( InputArray  image,//输入图像
    OutputArray  corners,//输出向量
    int  maxCorners,//角点最大数量
    double  qualityLevel,//角点检测可接受的最小特征值
    double  minDistance,//角点之间的最小距离
    InputArray  mask = noArray(),//感兴趣区域
    int  blockSize = 3,//领域范围
    bool  useHarrisDetector = false,//true为harris;false为Shi-Tomasi
    double  k = 0.04 //权重系数
  )    

Determines strong corners on an image.

The function finds the most prominent corners in the image or in the specified image region, as described in [154]

  • Function calculates the corner quality measure at every source image pixel using the cornerMinEigenVal or cornerHarris .
  • Function performs a non-maximum suppression (the local maximums in 3 x 3 neighborhood are retained).
  • The corners with the minimal eigenvalue less than qualityLevel⋅maxx,yqualityMeasureMap(x,y) are rejected.
  • The remaining corners are sorted by the quality measure in the descending order.
  • Function throws away each corner for which there is a stronger corner at a distance less than maxDistance.

The function can be used to initialize a point-based tracker of an object.

Note
If the function is called with different values A and B of the parameter qualityLevel , and A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector with qualityLevel=B .
Parameters
image Input 8-bit or floating-point 32-bit, single-channel image.
corners Output vector of detected corners.
maxCorners Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned. maxCorners <= 0 implies that no limit on the maximum is set and all detected corners are returned.
qualityLevel Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure less than 15 are rejected.
minDistance Minimum possible Euclidean distance between the returned corners.
mask Optional region of interest. If the image is not empty (it needs to have the type CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
blockSize Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See cornerEigenValsAndVecs .
useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris) or cornerMinEigenVal.
k Free parameter of the Harris detector.
调用:
Mat srcGray = imread("e:/template/lena.jpg",IMREAD_GRAYSCALE);    
,.,,Mat(),,.);
    ;i,Scalar());
    }
     
    imshow();
结果:
可以看到,眼部、帽子上面的尖端这些的却是"GoodFeatures"的地方都被标注了出来
三、如果需要亚像素的角点,我们必须更进一步。
函数:cornerSubPix()
void cv::cornerSubPix ( InputArray  image,
    InputOutputArray  corners,
    Size  winSize,
    Size  zeroZone,
    TermCriteria  criteria 
  )    
调用:需要注意现计算goodfeatures再算亚像素
Mat srcGray .,                              ,                                 ,                                 .                               , ),      ,),                   ,                              .                             ;i,Scalar());
        cout);
结果:
可以看到其计算处理小数点后面的值。
四、小结
角点虽然现在用的比较少了,但是作为基本的知识有必要了解;下一步的更为复杂的特征点模型都是基于角点的,它们之间有着一脉相承的关系。

寻找Harris、Shi-Tomasi和亚像素角点的更多相关文章

  1. OpenCV亚像素角点cornerSubPixel()源代码分析

    上一篇博客中讲到了goodFeatureToTrack()这个API函数能够获取图像中的强角点.但是获取的角点坐标是整数,但是通常情况下,角点的真实位置并不一定在整数像素位置,因此为了获取更为精确的角 ...

  2. OpenCV——Harris、Shi Tomas、自定义、亚像素角点检测

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

  3. OpenCV亚像素级的角点检测

    亚像素级的角点检测 目标 在本教程中我们将涉及以下内容: 使用OpenCV函数 cornerSubPix 寻找更精确的角点位置 (不是整数类型的位置,而是更精确的浮点类型位置). 理论 代码 这个教程 ...

  4. opencv亚像素级角点检测

    一般角点检测: harris cv::cornerHarris() shi-tomasi cv::goodFeaturesToTrack() 亚像素级角点检测是在一般角点检测基础之上将检测出的角点精确 ...

  5. Paper | 亚像素运动补偿 + 视频超分辨

    目录 1. ABSTRACT 2. INTRODUCTION 3. RELATED WORKS 4. SUB-PIXEL MOTION COMPENSATION (SPMC) 5. OUR METHO ...

  6. 亚像素Sub Pixel

    亚像素Sub Pixel 评估图像处理算法时,通常会考虑是否具有亚像素精度. 亚像素概念的引出: 图像处理过程中,提高检测方法的精度一般有两种方式:一种是提高图像系统的光学放大倍数和CCD相机的分辨率 ...

  7. 【工程应用七】接着折腾模板匹配算法 (Optimization选项 + no_pregeneration模拟 + 3D亚像素插值)

    在折腾中成长,在折腾中永生. 接着玩模板匹配,最近主要研究了3个课题. 1.创建模型的Optimization选项模拟(2022.5.16日) 这两天又遇到一个做模板匹配隐藏的高手,切磋起来后面就还是 ...

  8. Opencv 亚像素级别角点检测

    Size winSize = Size(5,5); Size zerozone = Size(-1,-1); TermCriteria tc = TermCriteria(TermCriteria:: ...

  9. OpenCV 亚像素级的角点检测

    #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #i ...

随机推荐

  1. 拓扑排序 topsort详解

    1.定义 对一个有向无环图G进行拓扑排序,是将G中所有顶点排成一个线性序列,通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列. 举例: h3 { marg ...

  2. VMware NAT端口映射 外网可以访问内网虚拟机

    我想尝试的是利用本机的ip+port来访问虚拟机上的web服务器,因为这样的话,我就能够将我的web服务器部署成为一个能让外网访问的服务器了,首先说下我的环境: 主机:系统win7,ip地址172.1 ...

  3. Hibernate 中Criteria Query查询详解【转】

    当查询数据时,人们往往需要设置查询条件.在SQL或HQL语句中,查询条件常常放在where子句中.此外,Hibernate还支持Criteria查询(Criteria Query),这种查询方式把查询 ...

  4. 在drawRect:方法中绘制图片,文字以及Core Graphics 框架的了解

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Menlo; color: #000000 } p.p2 { margin: 0.0px 0. ...

  5. Restful接口调用方法超详细总结

    由于在实际项目中碰到的restful服务,参数都以json为准.这里我获取的接口和传入的参数都是json字符串类型.发布restful服务可参照文章http://www.cnblogs.com/jav ...

  6. ThinkPHP5.0相关

    1.tp5的下载安装 使用git克隆下面的仓库地址,这个地址下载的速度比较快,差不多两分钟的时间. 克隆tp5的应用项目: git clone https://github.com/top-think ...

  7. UITabbarController左右滑动切换标签页

    UITabbarController左右滑动切换标签页 每个Tabbar ViewController都要添加如下代码,建议在基类中添加:ViewDidLoadUISwipeGestureRecogn ...

  8. vue指令v-text示例解析

    <div id="app"> <!--两种方式都是插值,输出结果一样--> <p v-text="msg"></p&g ...

  9. 纯Css绘制三角形箭头三种方法

    在制作网页的过程中少不了绘制类似图片的三角形箭头效果,虽然工程量不大,但是确实麻烦.在学习的过程中,总结了以下三种方法,以及相关的例子. 一.三种绘制三角形箭头方法 1.方法一:利用overflow: ...

  10. [SDOI2011]染色 线段树+树链剖分

    考试一共四个半小时,光这道题就打了三个小时..然后又改了俩小时才过.我太蒟蒻了. 其实数据结构这种题就看第一遍打没打顺,顺了就A了,要是再找错再改就慢了,而且样例过了不能说明任何问题(虽然考试的时候我 ...