「算法笔记」快速数论变换(NTT)
一、简介
前置知识:多项式乘法与 FFT。
FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差。快速数论变换(Number Theoretic Transform,简称 NTT)在 FFT 的基础上,优化了常数及误差。
NTT 其实就是把 FFT 中的单位根换成了原根。
NTT 解决的是多项式乘法带模数的情况,可以说有些受模数的限制,多项式系数应为整数。
二、原根 与 NTT
「算法笔记」基础数论 2 中提及了原根的部分内容。
对于质数 \(p\),若 \(g\) 为 \(p\) 的原根,则 \(g^i\bmod p\,(0\leq i<p)\) 互不相同。
考虑可以表示为 \(p=a\cdot 2^k+1\) 的质数 \(p\)。NTT 的模数一般选取这样符合要求的 \(p\)。比较常见的 \(p\) 有 \(998244353=119\cdot 2^{23}+1\)、\(1004535809=479\cdot 2^{21}+1\),它们的原根都是 \(3\)。
NTT 与 FFT 几乎一样,只不过 FFT 中代入的是 \(\omega_n^k\),而 NTT 中代入的是 \({(g^{\frac{p-1}{n}})}^k\)。
\({(g^{\frac{p-1}{n}})}^k\) 满足 FFT 中所用到的 \(\omega_n^k\) 拥有的性质。
结论:\(\omega_n^k\equiv {(g^{\frac{p-1}{n}})}^k\pmod p\),可以把 \({(g^{\frac{p-1}{n}})}^k\) 看成是 \(\omega_n^k\) 的等价。证明略。
由于 \(p\) 可以表示为 \(p=a\cdot 2^k+1\) 的形式,并且多项式项数 \(n\) 已被我们补为 \(2\) 的幂次,所以 \(\frac{p-1}{n}\) 一定为整数(注意 \(n\leq 2^k\),不然会出问题)。
代码只需在 FFT 的基础上稍作修改即可。复杂度同样为 \(\mathcal{O}(n\log n)\)。
//Luogu P3803
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=3e6+5,mod=998244353;
int n,m,a[N],b[N],len,r[N],inv;
int mul(int x,int n,int mod){
int ans=mod!=1;
for(x%=mod;n;n>>=1,x=x*x%mod)
if(n&1) ans=ans*x%mod;
return ans;
}
void NTT(int a[N],int n,int opt){ //opt=1/-1: DFT/IDFT
for(int i=0;i<n;i++)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int k=2;k<=n;k<<=1){
int m=k>>1,x=mul(3,(mod-1)/k,mod),w=1,v;
if(opt==-1) x=mul(x,mod-2,mod);
for(int i=0;i<n;i+=k,w=1)
for(int j=i;j<i+m;j++) v=w*a[j+m]%mod,a[j+m]=(a[j]-v+mod)%mod,a[j]=(a[j]+v)%mod,w=w*x%mod;
}
if(opt==-1){
inv=mul(len,mod-2,mod);
for(int i=0;i<n;i++) a[i]=a[i]*inv%mod;
}
}
signed main(){
scanf("%lld%lld",&n,&m);
for(int i=0;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=0;i<=m;i++)
scanf("%lld",&b[i]);
n=n+m+1;
for(len=1;len<n;len<<=1);
for(int i=0;i<len;i++)
r[i]=(r[i>>1]>>1)|((i&1)?len>>1:0);
NTT(a,len,1),NTT(b,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i]%mod;
NTT(a,len,-1);
for(int i=0;i<n;i++)
printf("%lld%c",a[i],i==n-1?'\n':' ');
return 0;
}
Update:改了改后的板子→link。
「算法笔记」快速数论变换(NTT)的更多相关文章
- 「算法笔记」快速傅里叶变换(FFT)
一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个 ...
- 【算法】快速数论变换(NTT)初探
[简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- 「算法笔记」树形 DP
一.树形 DP 基础 又是一篇鸽了好久的文章--以下面这道题为例,介绍一下树形 DP 的一般过程. POJ 2342 Anniversary party 题目大意:有一家公司要举行一个聚会,一共有 \ ...
- 「算法笔记」2-SAT 问题
一.定义 k-SAT(Satisfiability)问题的形式如下: 有 \(n\) 个 01 变量 \(x_1,x_2,\cdots,x_n\),另有 \(m\) 个变量取值需要满足的限制. 每个限 ...
- 「算法笔记」Polya 定理
一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S, ...
- JZYZOJ 2041 快速数论变换 NTT 多项式
http://172.20.6.3/Problem_Show.asp?id=2041 https://blog.csdn.net/ggn_2015/article/details/68922404 代 ...
- [快速数论变换 NTT]
先粘一个模板.这是求高精度乘法的 #include <bits/stdc++.h> #define maxn 1010 using namespace std; char s[maxn]; ...
随机推荐
- 日常Java 2021/9/21
将Java数组中的元素前后反转.题目要求:已知一个数组arr = {11,12,13,14,15}用程序实现把该数组中的元素值交换,交换后的数组arr = { 15,14,13,12,11},并输出交 ...
- 移动开发之h5学习大纲
移动开发学习形式:授课.自学 1.html5 css3 htm5shiv.js response.js 2.流式布局 自适应布局 盒模型 弹性盒模型 响应式布局3.iscroll swiper boo ...
- STM32代码常见的坑
1 混淆换行符\和除号/造成的坑 入坑代码: GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin ...
- OpenStack之七: compute服务(端口8774)
注意此处的bug,参考o版 官网地址 https://docs.openstack.org/nova/stein/install/controller-install-rdo.html 控制端配置 # ...
- Windows服务器java.exe占用CPU过高问题分析及解决
最近在测试一个用java语言实现的数据采集接口时发现,接口一旦运行起来,CPU利用率瞬间飙升到85%-95%,一旦停止就恢复到40%以下,这让我不得不面对以前从未关注过的程序性能问题. 在硬着头皮查找 ...
- 【Service】【Database】【Oracle】Oracle client 12.1.0.2 for MacOS
1. 概述:为了在我的macos上搭建python的cx_Oracle开发环境,首先需要配置oracle client 2. 环境与版本: 2.1. OS:Mac OS Sierra 10.12.2 ...
- matplotlib animation
import numpy as np from matplotlib import pyplot as plt from matplotlib import animation fig, ax = p ...
- 端口占用,windows下通过命令行查看和关闭端口占用的进程
1.查找所有端口号对应的PID 端口号:8080 命令:netstat -ano|findstr "8080" 2.找到端口的PID并关闭 PID:1016 命令:taskkill ...
- jarvisoj_tell_me_something
下载文件,首先checksec检查一下保护,发现只开启了NX 堆栈不可执行. 接下来我们拖进IDA看一下程序的主要流程. 很简洁的程序,可以看到read函数存在栈溢出. 再来看看有什么后门函数可以利用 ...
- LuoguP7008 [CERC2013]What does the fox say? 题解
Content 森林里面有很多声响,你想知道有哪些声响是由狐狸发出来的. 已知你搜集到了 \(n\) 个声响,并且还知道某些其他动物能够发出的声响,已知如果没有哪一个声响是由其他任何一种动物发出来的话 ...