洛谷 P4548 - [CTSC2006]歌唱王国(概率生成函数)
PGF 入门好题。
首先介绍一下 PGF 的基本概念。对于随机变量 \(X\),满足 \(X\) 的取值总是非负整数,我们即 \(P(v)\) 表示 \(X=v\) 的概率,那么我们定义 \(X\) 的概率生成函数为 \(F(x)=\sum\limits_{n\ge 0}P(n)x^n\)。较一般的生成函数有所不同的是,对于概率生成函数 \(F(1)=1\) 必然成立,因为 \(X\) 取遍所有值的概率之和为 \(1\)。此外,\(X\) 的期望 \(E(X)\) 也可表示为 \(\sum\limits_{n\ge 0}P(n)·n=F'(1)\),同理 \(X\) 的方差 variant 也可被表示为 \(F''(1)+F'(1)-F'(1)^2\),这个可以由方差基本公式 \(E(X^2)-E(X)^2\) 推得。
接下来考虑这道题。我们设 \(P(x)\) 为刚好唱了 \(x\) 秒的概率,\(Q(x)\) 为唱了至少 \(x+1\) 秒的概率,再记 \(F(x),G(x)\) 分别为 \(P(x),Q(x)\) 的 PGF,那么考虑 \(F,G\) 之间有什么联系,首先:
\]
这是因为至少唱 \(x\) 秒的概率就是恰好 \(x\) 秒的概率加上至少 \(x+1\) 秒的概率。
写成 PGF 的形式就是
\]
我们再从酋长的名字 \(a\) 的角度列式子。我们考虑一个时刻 \(t\),如果唱了 \(t\) 秒后还没有唱出酋长的名字,并且在接下来 \(len\) 秒后刚好唱出了酋长的名字,那么这样的概率就是 \(Q(x)·\dfrac{1}{n^{len}}\),再考虑将这个概率表示成 \(P\) 的形式,我们考虑什么时第一次唱出酋长的名字,我们假设在时刻 \(t+t'\),显然 \(t'\in[1,len]\),那么这样的概率就是 \(P(t+t')·\dfrac{1}{n^{len-t'}}\),但是一个 \(t'\) 不一定符合条件。不难发现由于我们钦定 \([t+1,t+len]\) 唱出的部分刚好是酋长的名字,而由于我们钦定 \(t+t'\) 时刻刚好唱出酋长的名字,因此必须有 \(a_i=a_{t-t'+i}\),也就是 \(a\) 存在长度为 \(t'\) 的 border。如果我们设 \(b_i\) 表示 \(a\) 是否存在长度 \(i\) 的 border,那么
\]
写成 PGF 的形式就是
\]
考虑将两个式子结合起来。对记一个式子求导可得:
\]
取 \(x=1\) 可得:
\]
也就是说答案等于 \(G(1)\)。
再将答案代入第二个式子:
\]
再结合 \(F(1)=1\) 可得:
\]
哈希/KMP 求 border 即可线性求解答案。
const int MAXN=1e5;
const int BS=333337;
const int HMOD=1004535809;
const int MOD=10000;
void print(int x){
static int d[6];int len=0;
while(x) d[len++]=x%10,x/=10;
while(len<4) d[len++]=0;
for(int i=3;~i;i--) printf("%d",d[i]);
printf("\n");
}
int n,qu,len,a[MAXN+5],pre[MAXN+5],suf[MAXN+5],pw[MAXN+5],pwn[MAXN+5];
void solve(){
scanf("%d",&len);for(int i=1;i<=len;i++) scanf("%d",&a[i]);
for(int i=1;i<=len;i++) pre[i]=(pre[i-1]+1ll*a[i]*pw[i-1])%HMOD;
suf[len+1]=0;for(int i=len;i;i--) suf[i]=(1ll*suf[i+1]*BS+a[i])%HMOD;
int res=0;for(int i=1;i<=len;i++) if(pre[i]==suf[len-i+1]) res=(res+pwn[i])%MOD;
print(res);
}
int main(){
int qu;scanf("%d%d",&n,&qu);
for(int i=(pwn[0]=1);i<=MAXN;i++) pwn[i]=1ll*pwn[i-1]*n%MOD;
for(int i=(pw[0]=1);i<=MAXN;i++) pw[i]=1ll*pw[i-1]*BS%HMOD;
while(qu--) solve();
return 0;
}
洛谷 P4548 - [CTSC2006]歌唱王国(概率生成函数)的更多相关文章
- 洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)
题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\), ...
- Luogu4548 CTSC2006 歌唱王国 概率生成函数、哈希
传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \ ...
- 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差
[题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...
- luogu P4548 [CTSC2006]歌唱王国
传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\), ...
- 【BZOJ1152】歌唱王国(生成函数,KMP)
[BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...
- [CTSC2006]歌唱王国
[CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...
- bzoi1152 [CTSC2006]歌唱王国Singleland
[CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...
- 洛谷P4389 付公主的背包--生成函数+多项式
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...
- 洛谷P4389 付公主的背包 [生成函数,NTT]
传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...
随机推荐
- 封装ARX给.Net调用
1:创建工程名.def的文件,内容如下: 2:def文件位置: 3:属性页配置: 4:acrxEntryPoint.cpp下面添加如下代码(可以传参数) 5:c#调用 怕自己忘记,记录一下.
- 【二食堂】Beta - 项目展示
项目展示 1. 团队介绍 二食堂很难排队 姓名 介绍 职务 刘享 热爱游戏,尤其是RPG和metrovinia类的游戏. 会C/C++, python, java. 后端 左正 一个普通的大学生,Py ...
- BUAA_2020_软件工程_结对项目作业
项目 内容 这个作业属于哪个课程 班级博客 这个作业的要求在哪里 作业要求 我在这个课程的目标是 掌握软件工程的思路方法 这个作业在哪个具体方面帮助我实现目标 学习结对编程 教学班级 006 项目地址 ...
- 了解 js 堆内存 、栈内存 。
js中的堆内存与栈内存 在js引擎中对变量的存储主要有两种位置,堆内存和栈内存. 和java中对内存的处理类似,栈内存主要用于存储各种基本类型的变量,包括Boolean.Number.String.U ...
- STM32采集AD的输入阻抗问题
在做一款消费电子产品时,需要采集电池电压(3.3V-4.2V),同时在休眠的时候希望尽量减小待机电流.电池电压采集电路采用两个1%的300K电阻进行分压,由该电路引起的待机电路为4.2/(300+30 ...
- SpringCloud 2020.0.4 系列之Hystrix看板
1. 概述 老话说的好:沉默是金,有时适当的沉默,比滔滔不绝更加有效. 言归正传,前面我们聊了有关 Hystrix 降级熔断的话题,今天我们来聊聊如何使用 turbine 和 hystrix dash ...
- eclipse配置Tomcat和Tomcat出现无效端口解决办法
一.eclipse配置Tomcat 1. 按图选择window-preferences 2在server处选择runtime environment . 3.点击右侧add,选择自己的Tomcat版本 ...
- 面试官:能用JS写一个发布订阅模式吗?
目录 1 场景引入 2 代码优化 2.1 解决增加粉丝问题 2.2 解决添加作品问题 3 观察者模式 4 经纪人登场 5 发布订阅模式 6 观察者模式和发布订阅模式的对比 什么是发布订阅模式?能手写实 ...
- flex步局 11.02
语法 justify-content: flex-start | flex-end | center | space-between | space-around flex-start:弹性盒子元素将 ...
- Kioskcached(2) 之 使用tcmalloc 替换 ptmalloc
前言 我在 Kioskcached(1)之 Memcached & Redis & Kioskcached 性能测试对比 中找到的一个问题是 malloc,对于一个内存型数据库,很容易 ...