本原串

题目链接

思路:

反向想将总的个数减去不符合要求的个数。我们枚举n的约数,然后把n平均分,就可以构成不符合要求的串,\(g[i]\)表示循环节长为i约数的个数\(2^i\),我们要求循环节为\(i\)的\(f[i]\),那么可以想到莫比乌斯,但在这里莫比乌斯不好些范围有些大,所以我们用dp的方式去重\(f[i] -= g[i] - f[j](j| i)\)复杂度为\(m*log(m)\) (\(m\)为\(n\)的约数个数).

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 2008;
int quick(int n,int m);
map<int,int>my;
int ans[1000000];
int f[1000000];
int slove(int n);
int main(void)
{
int n;
while(scanf("%d",&n)!=EOF)
{
printf("%d\n",slove(n));
}
return 0;
}
int quick(int n,int m)
{
int ans = 1;
while(m)
{
if(m&1)
ans = ans*n%mod;
n = n*n%mod;
m>>=1;
}
return ans;
}
int slove(int n)
{
int sum = 0;
int cn = 0;
memset(f,0,sizeof(f));
for(int i = 1; i <= sqrt(n); i++)
{
if(n%i == 0)
{
ans[cn++] = i;
if(i!=n/i)
ans[cn++] = n/i;
}
}
sort(ans,ans+cn);
cn--;
for(int i = 0; i < cn; i++)
{
f[i] = f[i]+quick(2,ans[i]);
f[i]%=mod + mod;
f[i]%=mod;
for(int j = i+1; j < cn; j++)
{
if(ans[j]%ans[i] == 0)
{
f[j] = ((f[j] - f[i])%mod + mod)%mod;
}
}
}
sum = quick(2,n);
for(int i = 0; i < cn; i++)
{
sum = sum - f[i];
sum %= mod;
}
return (sum + mod)%mod;
}

本原串(hdu 2197)的更多相关文章

  1. 本原串(HDU 2197 快速幂)

    本原串 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. hdu 2197 求长度为n的本原串 (快速幂+map)

    Problem Description由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串?答案mod2008.例如,10 ...

  3. 数学--数论--HDU 2197 本原串 (推规律)

    由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串? 答案mod2008. 例如,100100不是本原串,因为他是由两个 ...

  4. hdu-2197 本原串---枚举因子+容斥定理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2197 题目大意: 由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个 ...

  5. hdu 2197 推公式

    题意:由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串?答案mod2008.例如,100100不是本原串,因为他是由两 ...

  6. hdu 2197 本原串

    http://acm.hdu.edu.cn/showproblem.php?pid=2197 长度为n的01串有2的n次方个,再减去不符合要求的.不符合要求的字符串就是长度为n的约数的字符串. 递归处 ...

  7. HDU 2197 本源串

    如果一个串能完全由其子串组成,那么这个串就不是本源串 求长度为n的本源串的个数. 由定义一个串如果不是本源串,那么他的长度一定是组成其子本源串的长度的(>=1) 整数倍. 那么长度为n的串总个数 ...

  8. NOIP模拟

    1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...

  9. LCS,LIS,LCIS

    网站:CSUST 8月3日(LCS,LIS,LCIS) LCS:      以下讲解来自:http://blog.csdn.net/yysdsyl/article/details/4226630 [问 ...

随机推荐

  1. 23-Longest Substring Without Repeating Characters

    Given a string, find the length of the longest substring without repeating characters. Examples: Giv ...

  2. Git五个常见问题及解决方法

    一.删除远程仓库上被忽略的文件 由于种种原因,一些本应该被忽略的文件被我们误操作提交到了远程仓库了.那么我们该怎么删除这些文件呢? 以误提交了.idea目录为例,我们可以通过下面的步骤处理: 1)我们 ...

  3. JavaSE中级篇1 — 核心思想:面向对象 — 更新完毕

    1.面向对象编程思想(重点中的重点) 题外话: 其他都还可以是技术,但这里是走自己的路--面向对象编程,即:OOP,养成的思想就是:万物皆对象,懂得把东西抽离出来 这一部分记的理论知识很多,而且需要自 ...

  4. JVM结构详解

    JVM 结构详解 JVM 结构图 程序计数器(PC 寄存器) 程序计数器的定义 程序计数器是一块较小的内存空间,是当前线程正在执行的那条字节码指令的地址.若当前线程正在执行的是一个本地方法,那么此时程 ...

  5. day05文件编辑命令

    day05文件编辑命令 mv命令:移动文件 mv命令:mv命令用来对文件或目录重新命名,或者将文件从一个目录移到另一个目录中. 格式:mv [原来的文件路径] [现在的文件路径] mv命令后面既可以跟 ...

  6. Scala(八)【面向对象总结】

    面向对象总结 面向对象 1.scala包 1.声明包 1.在文件第一行通过package 包名 2.package 包名{ .... } 第二种方法,包名只能在target目录才能看到 2.导入包 1 ...

  7. 【leetcode】633. Sum of Square Numbers(two-sum 变形)

    Given a non-negative integer c, decide whether there're two integers a and b such that a2 + b2 = c. ...

  8. Netty实现Socket

    Netty实现Socket 从Java1.4开始, Java引入了non-blocking IO,简称NIO.NIO与传统socket最大的不同就是引入了Channel和多路复用selector的概念 ...

  9. 在应用程序中的所有其他bean被销毁之前执行一步工作

    1.实现ServletContextListener.ApplicationContextAware两个接口,在销毁方法里借助ApplicationContextAware注入的application ...

  10. ES6常用的数值转换方法

    <script type="text/javascript"> // Number常用方法 /* Number.isFinite() 用来检查一个数值是否为有限的(fi ...