34 | 并发安全字典sync.Map (上)

我们今天再来讲一个并发安全的高级数据结构:sync.Map。众所周知,Go 语言自带的字典类型map并不是并发安全的。

前导知识:并发安全字典诞生史

换句话说,在同一时间段内,让不同 goroutine 中的代码,对同一个字典进行读写操作是不安全的。字典值本身可能会因这些操作而产生混乱,相关的程序也可能会因此发生不可预知的问题。

在sync.Map出现之前,我们如果要实现并发安全的字典,就只能自行构建。不过,这其实也不是什么麻烦事,使用 sync.Mutex或sync.RWMutex,再加上原生的map就可以轻松地做到。

GitHub 网站上已经有很多库提供了类似的数据结构。我在《Go 并发编程实战》的第 2 版中也提供了一个比较完整的并发安全字典的实现。它的性能比同类的数据结构还要好一些,因为它在很大程度上有效地避免了对锁的依赖。

尽管已经有了不少的参考实现,Go 语言爱好者们还是希望 Go 语言官方能够发布一个标准的并发安全字典。

经过大家多年的建议和吐槽,Go 语言官方终于在 2017 年发布的 Go 1.9 中,正式加入了并发安全的字典类型sync.Map。

这个字典类型提供了一些常用的键值存取操作方法,并保证了这些操作的并发安全。同时,它的存、取、删等操作都可以基本保证在常数时间内执行完毕。换句话说,它们的算法复杂度与map类型一样都是O(1)的。

在有些时候,与单纯使用原生map和互斥锁的方案相比,使用sync.Map可以显著地减少锁的争用。sync.Map本身虽然也用到了锁,但是,它其实在尽可能地避免使用锁。

我们都知道,使用锁就意味着要把一些并发的操作强制串行化。这往往会降低程序的性能,尤其是在计算机拥有多个 CPU 核心的情况下。

因此,我们常说,能用原子操作就不要用锁,不过这很有局限性,毕竟原子只能对一些基本的数据类型提供支持。

无论在何种场景下使用sync.Map,我们都需要注意,与原生map明显不同,它只是 Go 语言标准库中的一员,而不是语言层面的东西。也正因为这一点,Go 语言的编译器并不会对它的键和值,进行特殊的类型检查。

如果你看过sync.Map的文档或者实际使用过它,那么就一定会知道,它所有的方法涉及的键和值的类型都是interface{},也就是空接口,这意味着可以包罗万象。所以,我们必须在程序中自行保证它的键类型和值类型的正确性。

好了,现在第一个问题来了。今天的问题是:并发安全字典对键的类型有要求吗?

这道题的典型回答是:有要求。键的实际类型不能是函数类型、字典类型和切片类型。

解析一下这个问题。 我们都知道,Go 语言的原生字典的键类型不能是函数类型、字典类型和切片类型。

由于并发安全字典内部使用的存储介质正是原生字典,又因为它使用的原生字典键类型也是可以包罗万象的interface{};所以,我们绝对不能带着任何实际类型为函数类型、字典类型或切片类型的键值去操作并发安全字典。

由于这些键值的实际类型只有在程序运行期间才能够确定,所以 Go 语言编译器是无法在编译期对它们进行检查的,不正确的键值实际类型肯定会引发 panic。

因此,我们在这里首先要做的一件事就是:一定不要违反上述规则。我们应该在每次操作并发安全字典的时候,都去显式地检查键值的实际类型。无论是存、取还是删,都应该如此。

当然,更好的做法是,把针对同一个并发安全字典的这几种操作都集中起来,然后统一地编写检查代码。除此之外,把并发安全字典封装在一个结构体类型中,往往是一个很好的选择。

总之,我们必须保证键的类型是可比较的(或者说可判等的)。如果你实在拿不准,那么可以先通过调用reflect.TypeOf函数得到一个键值对应的反射类型值(即:reflect.Type类型的值),然后再调用这个值的Comparable方法,得到确切的判断结果。

知识扩展

问题 1:怎样保证并发安全字典中的键和值的类型正确性?(方案一)

简单地说,可以使用类型断言表达式或者反射操作来保证它们的类型正确性。

为了进一步明确并发安全字典中键值的实际类型,这里大致有两种方案可选。

第一种方案是,让并发安全字典只能存储某个特定类型的键。

比如,指定这里的键只能是int类型的,或者只能是字符串,又或是某类结构体。一旦完全确定了键的类型,你就可以在进行存、取、删操作的时候,使用类型断言表达式去对键的类型做检查了。

一般情况下,这种检查并不繁琐。而且,你要是把并发安全字典封装在一个结构体类型里面,那就更加方便了。你这时完全可以让 Go 语言编译器帮助你做类型检查。请看下面的代码:

type IntStrMap struct {
m sync.Map
} func (iMap *IntStrMap) Delete(key int) {
iMap.m.Delete(key)
} func (iMap *IntStrMap) Load(key int) (value string, ok bool) {
v, ok := iMap.m.Load(key)
if v != nil {
value = v.(string)
}
return
} func (iMap *IntStrMap) LoadOrStore(key int, value string) (actual string, loaded bool) {
a, loaded := iMap.m.LoadOrStore(key, value)
actual = a.(string)
return
} func (iMap *IntStrMap) Range(f func(key int, value string) bool) {
f1 := func(key, value interface{}) bool {
return f(key.(int), value.(string))
}
iMap.m.Range(f1)
} func (iMap *IntStrMap) Store(key int, value string) {
iMap.m.Store(key, value)
}

如上所示,我编写了一个名为IntStrMap的结构体类型,它代表了键类型为int、值类型为string的并发安全字典。在这个结构体类型中,只有一个sync.Map类型的字段m。并且,这个类型拥有的所有方法,都与sync.Map类型的方法非常类似。

两者对应的方法名称完全一致,方法签名也非常相似,只不过,与键和值相关的那些参数和结果的类型不同而已。在IntStrMap类型的方法签名中,明确了键的类型为int,且值的类型为string。

显然,这些方法在接受键和值的时候,就不用再做类型检查了。另外,这些方法在从m中取出键和值的时候,完全不用担心它们的类型会不正确,因为它的正确性在当初存入的时候,就已经由 Go 语言编译器保证了。

稍微总结一下。第一种方案适用于我们可以完全确定键和值的具体类型的情况。在这种情况下,我们可以利用 Go 语言编译器去做类型检查,并用类型断言表达式作为辅助,就像IntStrMap那样。

总结

我们今天讨论的是sync.Map类型,它是一种并发安全的字典。它提供了一些常用的键、值存取操作方法,并保证了这些操作的并发安全。同时,它还保证了存、取、删等操作的常数级执行时间。

与原生的字典相同,并发安全字典对键的类型也是有要求的。它们同样不能是函数类型、字典类型和切片类型。

另外,由于并发安全字典提供的方法涉及的键和值的类型都是interface{},所以我们在调用这些方法的时候,往往还需要对键和值的实际类型进行检查。

这里大致有两个方案。我们今天主要提到了第一种方案,这是在编码时就完全确定键和值的类型,然后利用 Go 语言的编译器帮我们做检查。

在下一次的文章中,我们会提到另外一种方案,并对比这两种方案的优劣。除此之外,我会继续探讨并发安全字典的相关问题。

package main

import (
"fmt"
"sync"
) // ConcurrentMap 代表自制的简易并发安全字典。
type ConcurrentMap struct {
m map[interface{}]interface{}
mu sync.RWMutex
} func NewConcurrentMap() *ConcurrentMap {
return &ConcurrentMap{
m: make(map[interface{}]interface{}),
}
} func (cMap *ConcurrentMap) Delete(key interface{}) {
cMap.mu.Lock()
defer cMap.mu.Unlock()
delete(cMap.m, key)
} func (cMap *ConcurrentMap) Load(key interface{}) (value interface{}, ok bool) {
cMap.mu.RLock()
defer cMap.mu.RUnlock()
value, ok = cMap.m[key]
return
} func (cMap *ConcurrentMap) LoadOrStore(key, value interface{}) (actual interface{}, loaded bool) {
cMap.mu.Lock()
defer cMap.mu.Unlock()
actual, loaded = cMap.m[key]
if loaded {
return
}
cMap.m[key] = value
actual = value
return
} func (cMap *ConcurrentMap) Range(f func(key, value interface{}) bool) {
cMap.mu.RLock()
defer cMap.mu.RUnlock()
for k, v := range cMap.m {
if !f(k, v) {
break
}
}
} func (cMap *ConcurrentMap) Store(key, value interface{}) {
cMap.mu.Lock()
defer cMap.mu.Unlock()
cMap.m[key] = value
} func main() {
pairs := []struct {
k int
v string
}{
{k: 1, v: "a"},
{k: 2, v: "b"},
{k: 3, v: "c"},
{k: 4, v: "d"},
} // 示例1。
{
cMap := NewConcurrentMap()
cMap.Store(pairs[0].k, pairs[0].v)
cMap.Store(pairs[1].k, pairs[1].v)
cMap.Store(pairs[2].k, pairs[2].v)
fmt.Println("[Three pairs have been stored in the ConcurrentMap instance]") cMap.Range(func(key, value interface{}) bool {
fmt.Printf("The result of an iteration in Range: %v, %v\n",
key, value)
return true
}) k0 := pairs[0].k
v0, ok := cMap.Load(k0)
fmt.Printf("The result of Load: %v, %v (key: %v)\n",
v0, ok, k0) k3 := pairs[3].k
v3, ok := cMap.Load(k3)
fmt.Printf("The result of Load: %v, %v (key: %v)\n",
v3, ok, k3) k2, v2 := pairs[2].k, pairs[2].v
actual2, loaded2 := cMap.LoadOrStore(k2, v2)
fmt.Printf("The result of LoadOrStore: %v, %v (key: %v, value: %v)\n",
actual2, loaded2, k2, v2)
v3 = pairs[3].v
actual3, loaded3 := cMap.LoadOrStore(k3, v3)
fmt.Printf("The result of LoadOrStore: %v, %v (key: %v, value: %v)\n",
actual3, loaded3, k3, v3) k1 := pairs[1].k
cMap.Delete(k1)
fmt.Printf("[The pair with the key of %v has been removed from the ConcurrentMap instance]\n",
k1)
v1, ok := cMap.Load(k1)
fmt.Printf("The result of Load: %v, %v (key: %v)\n",
v1, ok, k1)
v1 = pairs[1].v
actual1, loaded1 := cMap.LoadOrStore(k1, v1)
fmt.Printf("The result of LoadOrStore: %v, %v (key: %v, value: %v)\n",
actual1, loaded1, k1, v1) cMap.Range(func(key, value interface{}) bool {
fmt.Printf("The result of an iteration in Range: %v, %v\n",
key, value)
return true
})
}
fmt.Println() // 示例2。
{
var sMap sync.Map
sMap.Store(pairs[0].k, pairs[0].v)
sMap.Store(pairs[1].k, pairs[1].v)
sMap.Store(pairs[2].k, pairs[2].v)
fmt.Println("[Three pairs have been stored in the sync.Map instance]") sMap.Range(func(key, value interface{}) bool {
fmt.Printf("The result of an iteration in Range: %v, %v\n",
key, value)
return true
}) k0 := pairs[0].k
v0, ok := sMap.Load(k0)
fmt.Printf("The result of Load: %v, %v (key: %v)\n",
v0, ok, k0) k3 := pairs[3].k
v3, ok := sMap.Load(k3)
fmt.Printf("The result of Load: %v, %v (key: %v)\n",
v3, ok, k3) k2, v2 := pairs[2].k, pairs[2].v
actual2, loaded2 := sMap.LoadOrStore(k2, v2)
fmt.Printf("The result of LoadOrStore: %v, %v (key: %v, value: %v)\n",
actual2, loaded2, k2, v2)
v3 = pairs[3].v
actual3, loaded3 := sMap.LoadOrStore(k3, v3)
fmt.Printf("The result of LoadOrStore: %v, %v (key: %v, value: %v)\n",
actual3, loaded3, k3, v3) k1 := pairs[1].k
sMap.Delete(k1)
fmt.Printf("[The pair with the key of %v has been removed from the sync.Map instance]\n",
k1)
v1, ok := sMap.Load(k1)
fmt.Printf("The result of Load: %v, %v (key: %v)\n",
v1, ok, k1)
v1 = pairs[1].v
actual1, loaded1 := sMap.LoadOrStore(k1, v1)
fmt.Printf("The result of LoadOrStore: %v, %v (key: %v, value: %v)\n",
actual1, loaded1, k1, v1) sMap.Range(func(key, value interface{}) bool {
fmt.Printf("The result of an iteration in Range: %v, %v\n",
key, value)
return true
})
} }

笔记源码

https://github.com/MingsonZheng/go-core-demo

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。

欢迎转载、使用、重新发布,但务必保留文章署名 郑子铭 (包含链接: http://www.cnblogs.com/MingsonZheng/ ),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。

Go语言核心36讲(Go语言实战与应用十二)--学习笔记的更多相关文章

  1. Go语言核心36讲(Go语言实战与应用二)--学习笔记

    24 | 测试的基本规则和流程(下) Go 语言是一门很重视程序测试的编程语言,所以在上一篇中,我与你再三强调了程序测试的重要性,同时,也介绍了关于go test命令的基本规则和主要流程的内容.今天我 ...

  2. Go语言核心36讲(Go语言基础知识三)--学习笔记

    03 | 库源码文件 在我的定义中,库源码文件是不能被直接运行的源码文件,它仅用于存放程序实体,这些程序实体可以被其他代码使用(只要遵从 Go 语言规范的话). 这里的"其他代码" ...

  3. Go语言核心36讲(Go语言实战与应用一)--学习笔记

    23 | 测试的基本规则和流程 (上) 在接下来的日子里,我将带你去学习在 Go 语言编程进阶的道路上,必须掌握的附加知识,比如:Go 程序测试.程序监测,以及 Go 语言标准库中各种常用代码包的正确 ...

  4. Go语言核心36讲(Go语言实战与应用三)--学习笔记

    25 | 更多的测试手法 在本篇文章,我会继续为你讲解更多更高级的测试方法.这会涉及testing包中更多的 API.go test命令支持的,更多标记更加复杂的测试结果,以及测试覆盖度分析等等. 前 ...

  5. Go语言核心36讲(Go语言实战与应用四)--学习笔记

    26 | sync.Mutex与sync.RWMutex 从本篇文章开始,我们将一起探讨 Go 语言自带标准库中一些比较核心的代码包.这会涉及这些代码包的标准用法.使用禁忌.背后原理以及周边的知识. ...

  6. Go语言核心36讲(Go语言实战与应用十四)--学习笔记

    36 | unicode与字符编码 在开始今天的内容之前,我先来做一个简单的总结. Go 语言经典知识总结 在数据类型方面有: 基于底层数组的切片: 用来传递数据的通道: 作为一等类型的函数: 可实现 ...

  7. Go语言核心36讲(Go语言实战与应用十八)--学习笔记

    40 | io包中的接口和工具 (上) 我们在前几篇文章中,主要讨论了strings.Builder.strings.Reader和bytes.Buffer这三个数据类型. 知识回顾 还记得吗?当时我 ...

  8. Go语言核心36讲(Go语言实战与应用二十二)--学习笔记

    44 | 使用os包中的API (上) 我们今天要讲的是os代码包中的 API.这个代码包可以让我们拥有操控计算机操作系统的能力. 前导内容:os 包中的 API 这个代码包提供的都是平台不相关的 A ...

  9. Go语言核心36讲(Go语言实战与应用二十四)--学习笔记

    46 | 访问网络服务 前导内容:socket 与 IPC 人们常常会使用 Go 语言去编写网络程序(当然了,这方面也是 Go 语言最为擅长的事情).说到网络编程,我们就不得不提及 socket. s ...

随机推荐

  1. 双系统升win11(grub启动问题修复与讲解)?!?

    起 最近win11不是出来了吗.(着急修复的可以直接跳到最后一步) 于是我就突发奇想给我半年没进去的windows升个级........ 于是我找到了我win11的升级包(从我一个同学哪儿) 工具都集 ...

  2. PTA习题6-8 统计一行文本的单词个数 (15分)

    参考<c和指针>里面运用strtok函数打印空白标记符(如\n,\t)的程序改写而成的代码 在之前我自己写了一个60行的链表版本的统计程序 相比之下这个strtok函数的程序要简洁明了的多 ...

  3. 【高热FAQ】关于智慧康养物联网加速器 ,你想知道的都在这

    摘要:从软硬件解决方案.设备接入到资源扶持,一文梳理智慧康养物联网加速器中ISV最关心的问题. 本文分享自华为云社区<[高热FAQ]关于智慧康养物联网加速器 ,你想知道的都在这>,作者:技 ...

  4. keras框架下的深度学习(一)手写体识别

    这个系列文章主要记录使用keras框架来搭建深度学习模型的学习过程,其中有一些自己的想法和体会,主要学习的书籍是:Deep Learning with Python,使用的IDE是pycharm. 在 ...

  5. Bootstrap响应式的导航栏

    Bootstrap 导航栏 | 菜鸟教程 <!DOCTYPE html> <html> <head> <meta charset="utf-8&qu ...

  6. java的加载与执行原理详解

    java程序从开发到最终运行经历了什么? (31) 编译期: 第一步:在硬盘某个位置(随意),新建一个xxx.java文件 第二步:使用记事本或者其他文本编辑器例如EditPlus打开xxx.java ...

  7. SpringCloud-初见

    目录 前言 微服务概述 微服务与微服务架构 微服务优缺点 微服务技术栈 为什么选择SpringCloud作为微服务架构 SpringCloud入门 SpringCloud和SpringBoot的关系 ...

  8. “介绍一下自己吧”——记2020BUAA软工团队介绍和采访

    写在前面 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任建) 这个作业的要求在哪里 团队作业-团队介绍和采访 团队介绍 团队名称 我们是 BUAA软软软件工程小队 ,简称 ...

  9. oo第三单元学习总结

    OO第三单元小结 一.JML语言理论基础及工具链梳理 在本单元我们学习了JML语言的一些基础知识,能够让我们看懂简单的JML规格并写出对应代码, 主要用到的知识点有:   1.requires 该子句 ...

  10. mongodb的聚合操作

    在mongodb中有时候我们需要对数据进行分析操作,比如一些统计操作,这个时候简单的查询操作(find)就搞不定这些需求,因此就需要使用  聚合框架(aggregation) 来完成.在mongodb ...