[LGP2758]编辑距离
题目
题目描述
设A和B是两个字符串。我们要用最少的字符操作次数,将字符串A转换为字符串B。这里所说的字符操作共有三种:
1、删除一个字符;
2、插入一个字符;
3、将一个字符改为另一个字符;
!皆为小写字母!
输入格式
第一行为字符串A;第二行为字符串B;字符串A和B的长度均小于2000。
输出格式
只有一个正整数,为最少字符操作次数。
输入输出样例
输入 #1
sfdqxbw
gfdgw
输出 #1
4
题目分析
当前的状态会影响到后续的状态。
我们可以考虑DP
设\(dp_{i,j}\)表示把\(a_{1\dots i}\) 转换为\(b_{1\dots j}\)需要的最少步数
那么\(dp_{i,j}\)应该就由四种状态转移过来:立改废存
- 什么都不变
这样需要\(a_i=b_j\),然后直接\(dp_{i,j}=dp_{i-1,j-1}\),也就是直接接下来就可以了
- 插入操作之后得到
那么就应该是让\(a_{1\dots i}\)操作得到\(b_{1\dots j-1}\),那么只需要在\(a_i\)后面插入\(b_j\),就可以把\(a_i\)转换成\(b_{j-1}\)之后再加一步,即\(dp_{i,j}=dp_{i,j-1}+1\)就可以得到\(b_{j}\)
- 删除操作之后得到
就应该让\(a_{1\dots i-1}\)操作之后得到\(b_{1\dots j}\),然后再把\(a_i\)删掉,就能通过\(a_i\)得到\(b_j\),即\(dp_{i,j}=dp_{i-1,j}+1\)
- 替换操作之后得到
那么就是\(a_{i-1}\)操作之后得到\(b_{j-1}\),然后把\(a_i\)改成\(b_j\),前提是\(a_i\neq b_j\),即\(dp_{i,j}=dp_{i-1,j-1}+1\)
如果\(a_i=b_j\),那么就直接接下来,否则就剩下三种情况的最小值。
状态转移方程
\begin{cases}
dp_{i-1,j-1} & a_i=b_j \\
\min(dp_{i-1,j},dp_{i,j-1},dp{i-1,j-1})+1 & a_i \neq b_j
\end{cases}
\]
初始状态
可以知道初始状态应该是\(dp_{i,0}\)和\(dp_{0,j}\)
也很容易得到把\(a_{1\dots i}\) 变成0(没有串)需要删除\(i\)步
同样\(dp_{0,j}=j\)
结束状态
\(dp_{lena,lenb}\)
Code
#include <cstdio>
#include <cstring>
#include <iostream>
int lena,lenb;
char a[2001],b[2001];
int dp[2001][2001];
int main()
{
scanf("%s%s",a+1,b+1);
lena=strlen(a+1); lenb=strlen(b+1);
for(register int i=1;i<=lena;++i)
{
dp[i][0]=i;
for(register int j=1;j<=lenb;++j)
{
dp[0][j]=j;
if(a[i]==b[j]) dp[i][j]=dp[i-1][j-1]; else
{
dp[i][j]=std::min(std::min(dp[i][j-1],dp[i-1][j]),dp[i-1][j-1])+1;
}
}
}
printf("%d\n",dp[lena][lenb]);
return 0;
}
[LGP2758]编辑距离的更多相关文章
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- C#实现Levenshtein distance最小编辑距离算法
Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...
- 利用Levenshtein Distance (编辑距离)实现文档相似度计算
1.首先将word文档解压缩为zip /** * 修改后缀名 */ public static String reName(String path){ File file=new File(path) ...
- Levenshtein Distance算法(编辑距离算法)
编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...
- 编辑距离——Edit Distance
编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...
- 编辑距离及其动态规划算法(Java代码)
编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字 ...
- stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)
I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...
- leetcode72. Edit Distance(编辑距离)
以下为个人翻译方便理解 编辑距离问题是一个经典的动态规划问题.首先定义dp[i][j表示word1[0..i-1]到word2[0..j-1]的最小操作数(即编辑距离). 状态转换方程有两种情况:边界 ...
- 准备NOIP2017 编辑距离问题 模板
输入 第1行:字符串a(a的长度 <= 1000). 第2行:字符串b(b的长度 <= 1000). 输出 输出a和b的编辑距离 输入示例 kitten sitting 输出示例 ...
随机推荐
- MySQL查询之内连接,外连接查询场景的区别与不同
前言 我在写sql查询的时候,用的最多的就是where条件查询,这种查询也叫内连查询inner join,当然还有外连查询outer join,左外连接,右外连接查询,常用在多对多关系中,那他们区别和 ...
- 【第十四篇】- Maven 自动化构建之Spring Cloud直播商城 b2b2c电子商务技术总结
Maven 自动化构建 自动化构建定义了这样一种场景: 在一个项目成功构建完成后,其相关的依赖工程即开始构建,这样可以保证其依赖项目的稳定. 比如一个团队正在开发一个项目 bus-core-api, ...
- Dart简易教程 (1)---数据类型 运算符,类转换换
从下面开始学习DART编程 以下是一个简单的示例: main(){ var number = 42; print(number);}程序说明,dart是一个强大的脚本类语言,可以不预先定义变量类型 , ...
- 洛谷P1056——排座椅(模拟,贪心,排序)
https://www.luogu.org/problem/show?pid=1056 题目描述 上课的时候总会有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情.不过,班主任小雪发 ...
- C#中List是链表吗?为什么可以通过下标访问
使用C#的同学对List应该并不陌生,我们不需要初始化它的大小,并且可以方便的使用Add和Remove方法执行添加和删除操作,但却可以使用下标来访问它的数据,它是我们常说的链表吗? List& ...
- 微信小程序view不能换行 text实现转义换行符
在html中可以直接使用<br />换行,但是小程序wxml中使用<br />无效,可以换成\n Page({ data: { title: '至少5个字\n请多说些感受吧' ...
- GCN数据集Cora、Citeseer、Pubmed文件分析
简介 本文将对Cora.Citeseer.Pubmed 数据集进行详细介绍 Cora.Citeseer.Pubmed 数据集 来源 图 节点 边 特征 标签(y) Cora "Collect ...
- 关于python如何构造测试数据
参考资料:https://www.cnblogs.com/miaoxiaochao/p/13234589.html 一.Faker模块是什么? 一个Python第三方模块,主要用来创建伪数据 无需再手 ...
- 鸿蒙内核源码分析(调度机制篇) | 任务是如何被调度执行的 | 百篇博客分析OpenHarmony源码 | v7.07
百篇博客系列篇.本篇为: v07.xx 鸿蒙内核源码分析(调度机制篇) | 任务是如何被调度执行的 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调 ...
- C语言日记① 初识C
概念 c语言是一种计算机语言 也就是人与计算机打交道的语言 在早期,因为计算机使用的二进制 所以早期写代码都是科学家来写的使用对应的功能二进制代码 需要用到手册,所以开发不方便 在后来,人们发明了汇编 ...