HDOJ--4869--Turn the pokers【组合数学+快速幂】

题意:有m张扑克,开始时全部正面朝下,你可以翻n次牌,每次可以翻xi张,翻拍规则就是正面朝下变背面朝下,反之亦然,问经过n次翻牌后牌的朝向有多少种情况。我们可以把正面朝上理解为1,反面朝上理解为0,那么可以理解为求01串的不同的组合方式有几种。

解题思路:我们可以知道,每张牌假设起始状态都为0,如果翻奇数次,该牌最后的情况是1,如果翻偶数次,该牌的最后情况为0.根据n次翻牌的个数找出1的个数的下限和上限,然后再在这个范围里用组合数学求有几种排列即可。

我们先来看怎么求1的个数的上限和下限:

Minm:下限  maxm:上限  p:当前的下限 q:当前的上限

1.求1的个数的下限:

当前下限大于等于现在翻牌的数量,这个比较好理解,全翻1,1变成0,则剩下的1就是minm-x;

当前下限小于翻牌数量,上限大于等于翻牌数量,即翻牌数量刚好在上下限之间,所以最少可以把正面朝上的数量减为零,但不一定能减到0,因为有可能当前正面朝上的牌时奇数,而翻牌数量是偶数,所以要判断奇偶性是否一样,为什么要和minm比较奇偶性。如果奇偶性相同,可以减为0,

否则,应该为1。

翻牌数量比上限还大的时候,直接减去上限就是下限。

2.求1的个数的上限:

上限+翻牌数量没有达到总牌数时,上限+翻牌数量就是新的上限,全翻0,这样使1最多;

上限+翻牌数量大于总牌数,而下限+翻牌数量小于等于总牌数,前者可以说是翻牌溢出了,已经全是1再翻的话只会让一些1变成0,后者没有达到全变成1的情况。它们是一个上限一个下限,这说明可以处理到在这之间的情况,那么最好的结果是所有牌都正面朝上,全是1,需要判断奇偶性是否一致,这回和m比较。

上限+翻牌数、下限+翻牌数全都大于总牌数时,说明都会溢出,那就用2 * m - (x + minm)来表示上限,因为(x+minm)小,所以溢出的1变成0的牌数少。

接下来要处理的是计算出 c ( m , i ) 的值:

由于数比较大,要对1000000009取余,这里要用到快速幂取余:

模板如下:

  1. long long  PowerMod (int a, int b, int c)
  2. {
  3. int  ans = 1;
  4. a = a % c;
  5. while(b>0) {
  6. if(b % 2 = = 1)
  7. ans = (ans * a) % c;
  8. b = b/2;       //   b>>=1;
  9. a = (a * a) % c;
  10. }
  11. return ans;
  12. }

关于快速幂取余,可以查看链接:http://blog.csdn.net/acm_code/article/details/38270829

用数组c表示组合数学 c ( m , i ) 的值, 按理说 c[ i ] = c[ i - 1 ] * ( m - i + 1 ) / i ,然后这个数对MOD取模,但是存在除法取模就不是这么简单的分解了,费马小定理是这样: a^(p-1) ≡1(mod p),p为质数,a、p互质,a^(p-1) mod p 恒等于1。

变换一下,两边同时除以a ,变成 a^(p-2)=a^(-1)(mod p),所以要除以a 就可以表示成 乘  a^(p-2),所以有了这样的写法:c[i] = c[i-1] * (m-i+1) % MOD * PowerMod(i,MOD-2) % MOD;

最后将组合数学值相加的时候,要隔一个相加,不难发现上限和下限的奇偶性一样。

总和一下上述思想,我们可以写出代码:

 #include<stdio.h>
#define MOD 1000000009
__int64 c[];
__int64 mode(__int64 a,int n)
{
__int64 t = a;
__int64 ans = ;
while(n)
{
if(n & )
{
ans = ans * t % MOD;
}
n >>= ;
t = t * t % MOD;
}
return ans;
}
int main()
{
int minm,maxm,x;
int p,q;
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
//初始状态下1的上限和下限都为0;
minm = maxm = ;//maxm表示上限,minm表示下限
p = q = ;//p、q分别记录当前下,上限,然后更新到minm、maxm中
for(int i=; i<n; i++)
{
scanf("%d",&x);//第i次翻牌的数量
//判断下限
if(minm>=x)//当前下限大于等于现在翻牌的数量
p = minm - x;//全翻1,1变成0,则剩下的1就是minm-x else if(maxm>=x)//当前下限小于翻牌数量,上限大于等于翻牌数量,
p = ((x&)==(minm&))?:; //x与minm同奇偶就为0 ,否则为1 else//翻牌数量比上限还大的时候,直接减去上限就是下限
p = x - maxm; //判断上限
if(maxm+x<=m)//上限+翻牌数量没有达到总牌数时,上限+翻牌数量就是新的上限
q = maxm + x; else if(minm+x<=m) //上限+翻牌数量大于总牌数,而下限+翻牌数量小于等于总牌数
q = (((minm+x)&)==(m&))?m:m-;//x与minm同奇偶就为0,否则为1 else//上限+翻牌数、下限+翻牌数全都大于总牌数
q = * m - (x + minm); minm = p;
maxm = q;
}
__int64 sum=;
c[]=;
for(int i=; i<=maxm; i++)//求C(m,i);
{
if(m-i<i)
c[i] = c[m-i];
else
{
c[i] = c[i-]*(m-i+)%MOD*mode((__int64)i,MOD-)%MOD;
}
}
for(int i=minm; i<=maxm; i+=)
{
sum+=c[i];
sum%=MOD;
}
printf("%I64d\n",sum);
}
return ;
}

HDU 4869 Turn the pokers (2014 多校联合第一场 I)的更多相关文章

  1. HDU 4869 Turn the pokers (2014多校联合训练第一场1009) 解题报告(维护区间 + 组合数)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. HDU 4865 Peter's Hobby(2014 多校联合第一场 E)(概率dp)

    题意:已知昨天天气与今天天气状况的概率关系(wePro),和今天天气状态和叶子湿度的概率关系(lePro)第一天为sunny 概率为 0.63,cloudy 概率 0.17,rainny 概率 0.2 ...

  3. hdu 4869 Turn the pokers (2014多校联合第一场 I)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. HDU 4869 Turn the pokers (2014 Multi-University Training Contest 1)

    Turn the pokers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. hdu 4865 Peter&#39;s Hobby(2014 多校联合第一场 E)

    Peter's Hobby Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  6. HDU 4870 Rating (2014 多校联合第一场 J)(概率)

    题意: 一个人有两个TC的账号,一开始两个账号rating都是0,然后每次它会选择里面rating较小的一个账号去打比赛,每次比赛有p的概率+1分,有1-p的概率-2分,当然如果本身是<=2分的 ...

  7. HDU 4868 Information Extraction(2014 多校联合第一场 H)

    看到这道题时我的内心是奔溃的,没有了解过HTML,只能靠窝的渣渣英语一点一点翻译啊TT. Information Extraction 题意:(纯手工翻译,有些用词可能在html中不是一样的,还多包涵 ...

  8. HDU 4869 Turn the pokers(推理)

    HDU 4869 Turn the pokers 题目链接 题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转.一共同拥有m张牌.问最后翻转之后的情况数 思路:对于每一些翻转,假设能确 ...

  9. hdu 5288||2015多校联合第一场1001题

    pid=5288">http://acm.hdu.edu.cn/showproblem.php?pid=5288 Problem Description OO has got a ar ...

随机推荐

  1. 【转】LINUX下一款不错的网站压力测试工具webbench

    原文链接:http://blog.csdn.net/xinqingch/article/details/8618704 安装: wget http://blog.s135.com/soft/linux ...

  2. POJ 1830 【高斯消元第一题】

    首先...使用abs()等数学函数的时候,浮点数用#include<cmath>,其它用#include<cstdlib>. 概念: [矩阵的秩] 在线性代数中,一个矩阵A的列 ...

  3. 不直接访问远程的数据库,而是通过中间件(专业DBA的博客)

    建议不直接访问远程的数据库,而是通过中间件. 或者找到好的加密方式.http://blog.csdn.net/sqlserverdiscovery/article/details/8068318 在S ...

  4. 区间重合判断(pojg校门外的树)

    pojg:http://poj.grids.cn/practice/2808 解法1:以空间换时间: #include<stdio.h> #include<string.h> ...

  5. 【Leetcod】Unique Binary Search Trees II

    给定结点数n,结点值为1,2,...,n,求由这些结点可以构成的所有二叉查找树. Given n, generate all structurally unique BST's (binary sea ...

  6. Web 应用程序项目 XXXX 已配置为使用 IIS。 无法访问 IIS 元数据库。您没有足够的特权访问计算机上的 IIS 网站。(转载)

    Web 应用程序项目 XXXX 已配置为使用 IIS. 无法访问 IIS 元数据库.您没有足够的特权访问计算机上的 IIS 网站. 2012年05月19日 ⁄ 综合 ⁄ 共 261字 ⁄ 字号 小 中 ...

  7. 管理tips

    管理是什么? 我认为达到的目的就是高效.低成本. 成本低才能有盈余,才能活的长和舒服.高效就是无谓的消耗少,以结果为导向. 开源节流,应该包含显性的与隐性的两方面. 隐性成本: 1.会议成本;2.沟通 ...

  8. 【转】centOS上安装redis+phpredis2.2.4扩展

    原文链接:http://www.cnblogs.com/xsi640/p/3756130.html 我原来的安装方式:http://www.cnblogs.com/wuling129/p/464738 ...

  9. Python中的循环与跳出

    --start-- for循环: for i in range(3): user_input = input("Your username:") passwd = int(inpu ...

  10. CairoSVG - Convert SVG to PNG or PDF - Contents

    CairoSVG - Convert SVG to PNG or PDF - Contents User Documentation Author Guillaume Ayoub Date 2011- ...