目的:

通过一个c语言实例,了解linux页表的组织结果和mmu的工作原理。

通过页表找到一个物理地址, 对比物理地址与虚拟地址的内容是否一致。

运行环境:

$ uname -r
3.15.6-200.fc20.x86_64

准备工作

1. 安装crash

$ sudo yum install crash

熟悉crash

help:

http://people.redhat.com/anderson/help.html

White Paper:

http://people.redhat.com/anderson/crash_whitepaper/

1. 安装debuginfo

$ sudo debuginfo-install kernel

or

$ sudo yum install kernel-debuginfo

2. 下载一个linux源代码

可选

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

3. 准备一个C语言代码

熟悉linux页表使用。
hello.c

  1. #include <stdio.h>
  2.  
  3. void main()
  4. {
  5. char *str = "hello world";
  6. printf("%s @ %p\n", str, str);
  7. pause();
  8. }

编译:

$ gcc -o  hello hello.c

基本概念:

内核空间:

32位系统, linux将最上的1G用于内核虚拟地址。空间 0xc0000000 - 0xffffffff
linux将物理内存完全一一映射到内核空间,这样很方便管理内存,任何页面的(0M-896M的线性区)虚拟地址减去一个0xc0000000的偏移就可以得到物理地址。

有关64位的内核线性地址起始位置:
arch/x86/include/asm/page_64_types.h:#define __PAGE_OFFSET          
_AC(0xffff880000000000, UL)

分页原理:

虚拟地址转化为物理地址过程。

MMU干的事情,就是 通过 PML + PUD +  PMD  + PTE 得出虚拟地址对应的真正的内存物理地址。

在64位系统, 虚拟地址才用4级分页(9+9+9+12)。 PML, PUD, PMD, PTE不是1024个项(因为每项是64位)是512。

不清楚PML是什么缩写,按照《内核》这本书的说法,应该是PGD (page directory)。

PUD(page upper directory) PMD(page middle directory)
PTE(page table entry)

假如我们的线性地址(虚拟地址)为0x400650(例子中的地址确实是400650),得到物理地址的过程如下:

每级页表(目录)索引值:

PML中的目录项:  (0x400650>>(9+ 9 + 9 + 12)) & 0x1ff  = 0
PUD中的目录项: (0x400650>>(9 + 9 + 12)) & 0x1ff  = 0
PMD中的目录项: (0x400650>>(9 + 12)) & 0x1ff  = 0x2
PTE中的目表项: (0x400650>>(12)) & 0x1ff  = 0

在页中的偏移量(4K的页)

(0x400650>>(0)) & 0xfff  = 0x650

图示转化过程:

cr3  包含页目录指针表, 假设为0x5427a000, 这是个物理地址。
每级页表包含下一级页表的信息。

下图,对于4K的页, PML的第0个目录项,0000000064e39067
为目录项中的内容,高(64-12)位(红色)是下一级页表的物理地址, 低位 12位是各种标志位(PRESENT|RW|USER|ACCESSED|DIRTY
)。

实践:

1. 运行 hello

$ ./hello
hello world @ 0x400650

2. 启动 crash

crash> ps |grep hello
  24458  24204   0  ffff8801573b09e0  IN   0.0    4152    632  hello
crash> set 24458
    PID: 24458
COMMAND: "hello"
   TASK: ffff8801573b09e0  [THREAD_INFO: ffff880090794000]
    CPU: 0
  STATE: TASK_INTERRUPTIBLE 
crash> px ((struct task_struct *)0xffff8801573b09e0)->mm->pgd
$1 = (pgd_t *) 0xffff88005427a000
crash> px (0xffff88005427a000 - 0xffff880000000000)
$2 = 0x5427a000                                           # 相当CR3中的内容, PML的首地址
crash> px $2 + 0x0                                        #  PML的第0项
$3 = 0x5427a000
crash> rd -p 0x5427a000                             #
        5427a000:  0000000064e39067                    g..d....
crash> pte 0000000064e39067
  PTE     PHYSICAL  FLAGS
64e39067  64e39000  (PRESENT|RW|USER|ACCESSED|DIRTY)         # 64e39000 PUD的首地址
crash> px (0x400650>>30) & 0x1ff
$4 = 0x0

crash> px 0x64e39000 + 0x0                                                      #  PUD 的第0项
$5 = 0x64e39000
crash> rd -p 0x64e39000
        64e39000:  000000000b052067                    g ......
crash> pte 000000000b052067
  PTE    PHYSICAL  FLAGS
b052067   b052000  (PRESENT|RW|USER|ACCESSED|DIRTY)       # b052000 PMD的首地址
crash> px (0x400650>>21) & 0x1ff
$6 = 0x2
crash> px 0xb052000 + 0x2 * 8                                                  #  PMD 的第2项
$7 = 0xb052010
crash> rd -p 0xb052010
         b052010:  00000000ba5a6067                    g`Z.....
crash> pte 00000000ba5a6067
  PTE     PHYSICAL  FLAGS
ba5a6067  ba5a6000  (PRESENT|RW|USER|ACCESSED|DIRTY)    # ba5a6000 PTE的首地址
crash> px (0x400650>>12) & 0x1ff
$8 = 0x0
crash> px 0xba5a6000 + 0x0                                  #  PTE 的第0项
$9 = 0xba5a6000
crash> rd -p 0xba5a6000
        ba5a6000:  000000001cdc5025                    %P......
crash> pte 000000001cdc5025
  PTE     PHYSICAL  FLAGS
1cdc5025  1cdc5000  (PRESENT|USER|ACCESSED)            # 进程, 线性页对应的 真正的物理页框地址
crash> px 0x400650 & 0xfff
$10 = 0x650
crash> px 0x1cdc5000 + 0x650                                            # “hello world.%s” 所在 的物理地址。
$11 = 0x1cdc5650
crash> rd -p 0x1cdc5650 2
        1cdc5650:  6f77206f6c6c6568 4020732500646c72   hello world.%s @
crash> vtop 0x400650        # 以上步骤可以一步搞定。
VIRTUAL     PHYSICAL        
400650      1cdc5650

PML: 5427a000 => 64e39067
   PUD: 64e39000 => b052067
   PMD: b052010 => ba5a6067
   PTE: ba5a6000 => 1cdc5025
  PAGE: 1cdc5000

PTE     PHYSICAL  FLAGS
1cdc5025  1cdc5000  (PRESENT|USER|ACCESSED)

VMA           START       END     FLAGS FILE
ffff8800541f2228     400000     401000 8000875 /home/shhfeng/work/workdir/ccode/hello

PAGE        PHYSICAL      MAPPING       INDEX CNT FLAGS
ffffea0000737140  1cdc5000 ffff88003fc40200        0  2 3ffff800020068 uptodate,lru,active,mappedtodisk

图示:

0x5427a000                               0x0000000064e39000                       0x000000000b052000            0x00000000ba5a6000                      0x000000001cdc5000
     +  0                                             + 0
                                                    +0x2 * 8 (64位)      
                + 0                                                    
+0x650
 
= 0x5427a000                              =0x64e39000                                   = 0xb052010                          = 0xba5a6000                                   =  0x1cdc5650
                                        
                                                  
                                                                   
                                                                                                

 0   |0000000064e39067 |  ---->   0  |000000000b052067
| --->              |                                 | 
----> 0  |000000001cdc5025 |-->                   
|                                 |
      |                                 |               
|                                 |     |               |                   
             |              |                                
|      |                 |                                 |
      |                                 |               
|                                 |     |---> 0x2   |00000000ba5a6067|               |                     
           |      .                 |                     
           |
      |                                 |               
|                                 |                    
|                                 |             
|                                 |      .                 |                   
             |
      |                                 |               
|                                 |                    
|                                 |             
|                                 |      . -->0x650  |hello world.%s @      |
      |                                 |               
|                                 |                    
|                                 |             
|                                 |                        |                                 |
      |                                 |               
|                                 |                    
|                                 |             
|                                 |                        |                                 |
      |                                 |               
|                                 |                    
|                                 |             
|                                 |                        |                                 |
      |                                 |               
|                                 |                     |                   
             |              |                     
           |                        |                   
             |

PML                                           
PUD                                                
PMD                                        
PTE                                                    4K的page

通过crash了解linux页表的更多相关文章

  1. 【原创】ARMv8 MMU及Linux页表映射

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  2. linux页表机制

    每个进程都拥有一个自己的页表,在linux中,有一个页目录数组,这是分页机制的最高层,每个进程的页表对应其中的一个页目录项,通过cr3寄存器可以访问. 一个进程的页表,对应的页表项中对应页的物理地址. ...

  3. Linux内存管理 (2)页表的映射过程

    专题:Linux内存管理专题 关键词:swapper_pd_dir.ARM PGD/PTE.Linux PGD/PTE.pgd_offset_k. Linux下的页表映射分为两种,一是Linux自身的 ...

  4. Process Kill Technology && Process Protection Against In Linux

    目录 . 引言 . Kill Process By Kill Command && SIGNAL . Kill Process By Resource Limits . Kill Pr ...

  5. linux处理闰秒

    闰秒的介绍可以参考维基百科 https://zh.wikipedia.org/wiki/闰秒 linux处理闰秒 Linux使用UTC时钟,并通过NTP (Network time protocol) ...

  6. Android平台抓取native crash log

    Android开发中,在Java层可以方便的捕获crashlog,但对于 Native 层的 crashlog 通常无法直接获取,只能通过系统的logcat来分析crash日志. 做过 Linux 和 ...

  7. Linux 虚存的性能问题

    虚存子系统是所有 UNIX 系统的核心组件.下面讨论虚存系统的实现及其对操作系统中几乎其他所有子系统的作用和影响.首先详细说明一些基本的内存管理问题:然后具体分析 Linux 操作系统如何实施虚存管理 ...

  8. Linux内存管理 (1)物理内存初始化

    专题:Linux内存管理专题 关键词:用户内核空间划分.Node/Zone/Page.memblock.PGD/PUD/PMD/PTE.lowmem/highmem.ZONE_DMA/ZONE_NOR ...

  9. Linux 驱动开发

    linux驱动开发总结(一) 基础性总结 1, linux驱动一般分为3大类: * 字符设备 * 块设备 * 网络设备 2, 开发环境构建: * 交叉工具链构建 * NFS和tftp服务器安装 3, ...

随机推荐

  1. 下载PHPDroid: 基于WebView和PHP内置HTTP服务器开发Android应用

    基于Android上的PHP(比如我打包的PHPDroid),寥寥几行PHP代码,就能实现一个支持无线局域网用浏览器访问的Android手机的Shell,用于执行命令和PHP代码.       个人在 ...

  2. Python爬虫实战(1):爬取Drupal论坛帖子列表

    1,引言 在<Python即时网络爬虫项目: 内容提取器的定义>一文我们定义了一个通用的python网络爬虫类,期望通过这个项目节省程序员一半以上的时间.本文将用一个实例讲解怎样使用这个爬 ...

  3. Python成长之路第一篇(4)_if,for,while条件语句

    有了以上的基本基础,已经上面写的几个小练习,大家肯定有很多的不满,比如查询为什么查询一次就退出了呢?下面我们来学习条件语句 一.万恶的加号 以前我们在print的时候如果要加上变量都有是使用+来作为连 ...

  4. c语言字符串翻转系列

    2013-10-25 最近碰到一道笔试题,是关于字符串翻转的.题目是:将一段英文翻转,但保留单词拼写,如给定字符串str="I am a student",返回为"stu ...

  5. FileProvider是个什么东西?

    FileProvider是个什么东西? 在<读取并监控文件的变化>中,我们通过三个简单的实例演示从编程的角度对文件系统做了初步的体验,接下来我们继续从设计的角度来继续认识它.这个抽象的文件 ...

  6. SQL Server 数据文件的页面分部情况

    ---------------------------------------------------------------------------------------------------- ...

  7. java+android学习路线图

    java.android学习路线图  看图之前先按住Ctrl键同时滑动鼠标滚轮

  8. Delphi实现全局鼠标钩子

    其中涉及到的一些API,网上均能查到详细的解释,这里不再熬述.源码下载 因为是全局钩子,所以要用dll注入.用到的鼠标消息结构如下: PMouseHookStruct = ^TMouseHookStr ...

  9. Windows Azure Service Bus 推动财务服务门户的高可用性和可伸缩性

    抵押贷款公司和评估管理公司面临着快速.复杂且数据量极大的业务流程.他们需要可快速.轻松设置且容量几乎无限的可伸缩的企业级服务,来对处理评估订单以及自动化流程本身所产生的所有文档和数据进行管理. 这听起 ...

  10. javascritp第十课:面向对象

    js中的函数就是对象,对象就是函数,当js中需要使用面向对象,使用js闭包模拟面向对象,当函数作为对象使用时,每个单词首字母都大写 var obj=new object();  //js中默认就是ob ...