题目链接

给出m个区间, 按区间给出的顺序, 求出覆盖$ [1, n] $ 至少需要多少个区间。

如果先给出[10, 20], 在给出[1, 10], 那么相当于[10, 20]这一段没有被覆盖。

令dp[i]表示覆盖[1, i]需要的区间数量。 那么有状态转移方程dp[i] = $ min[dp[i], dp[j] (s_k <= j < t_k)] + 1 $

然后求 \([s_k, t_k]\) 的最小值可以用线段树来求。 复杂度 $ m\log{n} $

感觉这个题的难度在于理解题意....

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <complex>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef complex <double> cmx;
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int mod = 1e9+7;
const int inf = 1061109567;
const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
const int maxn = 5e4+5;
int minn[maxn<<2];
void update(int p, int val, int l, int r, int rt) {
if(l == r) {
minn[rt] = min(val, minn[rt]);
return ;
}
int m = l+r>>1;
if(p<=m)
update(p, val, lson);
else
update(p, val, rson);
minn[rt] = min(minn[rt<<1], minn[rt<<1|1]);
}
int query(int L, int R, int l, int r, int rt) {
if(L<=l&&R>=r) {
return minn[rt];
}
int m = l+r>>1, ret = inf;
if(L<=m)
ret = min(ret, query(L, R, lson));
if(R>m)
ret = min(ret, query(L, R, rson));
return ret;
}
int main()
{
int n, m, a, b, x;
while(~scanf("%d%d", &n, &m)) {
mem2(minn);
update(1, 0, 1, n, 1);
for(int i = 0; i < m; i++) {
scanf("%d%d", &a, &b);
int x = query(a, b-1, 1, n, 1);
update(b, x+1, 1, n, 1);
}
printf("%d\n", query(n, n, 1, n, 1));
}
return 0;
}

poj 1769 Minimizing maximizer 线段树维护dp的更多相关文章

  1. POJ.1769.Minimizing maximizer(线段树 DP)

    题目链接 /* 题意:有m个区间,问最少要多少个区间能覆盖[1,n] 注:区间要按原区间的顺序,不能用排序贪心做 设dp[i]表示最右端端点为i时的最小值 dp[e[i]]=min{dp[s[i]]~ ...

  2. Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)

    题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...

  3. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  4. Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp

    D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...

  5. POJ 1769 Minimizing maximizer(DP+zkw线段树)

    [题目链接] http://poj.org/problem?id=1769 [题目大意] 给出一些排序器,能够将区间li到ri进行排序,排序器按一定顺序摆放 问在排序器顺序不变的情况下,一定能够将最大 ...

  6. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

  7. 【8.26校内测试】【重构树求直径】【BFS模拟】【线段树维护DP】

    题目性质比较显然,相同颜色联通块可以合并成一个点,重新建树后,发现相邻两个点的颜色一定是不一样的. 然后发现,对于一条链来说,每次把一个点反色,实际上使点数少了2个.如下图 而如果一条链上面有分支,也 ...

  8. 2019牛客暑期多校训练营(第二场)E 线段树维护dp转移矩阵

    题意 给一个\(n\times m\)的01矩阵,1代表有墙,否则没有,每一步可以从\(b[i][j]\)走到\(b[i+1][j]\),\(b[i][j-1]\),\(b[i][j+1]\),有两种 ...

  9. Codeforces750E. New Year and Old Subsequence (线段树维护DP)

    题意:长为2e5的数字串 每次询问一个区间 求删掉最少几个字符使得区间有2017子序列 没有2016子序列 不合法输出-1 题解:dp i,p(0-4)表示第i个数匹配到2017的p位置删掉的最少数 ...

随机推荐

  1. HTML——表格与表单

    1.表格 <table></table> background:背景图片. 属性 值 描述 align left center right 不赞成使用.请使用样式代替. 规定表 ...

  2. model、dao、 service 和Comtroll层的关系

    首先这是现在最基本的分层方式,结合了SSH架构.modle层就是对应的数据库表的实体类.Dao层是使用了Hibernate连接数据库.操作数据库(增删改查).Service层:引用对应的Dao数据库操 ...

  3. JavaScript基本概念(数组)

    1.数组方法 /** * join(str) * 将数组元素转换为字符串并使用参数中的字符串将各字符串链接起来 */ var a = [1, 2, 3]; a.join(); // "1,2 ...

  4. ContentProvider类的解析

    一.ContentProvider类 1.作用:专门用于不同应用之间进行数据共享的方式. 二.实现方法 1.创建ContenteProvider类 步骤一:继承ContentProvider接口,重写 ...

  5. ajax查询数据的举例

    1.根据下拉框的值异步查询信息 HTML代码如下: <script> $(function(){ //页面载入时执行 $("#key").change(function ...

  6. C语言函数qsort的使用方法

    qsort函数stdlib.h文件中,函数原型为 void qsort(void *base,size_t nelem,size_t width,int (*Comp)(const void *,co ...

  7. android-Java SoftReference,WeakReference,Direct Reference简介

    主要部分: SoftReference(软引用)是java中一个用来实现缓存内容的类.通过此类,可以观察某对象什么时候会被垃圾收集的执行绪清除.被 Soft Reference 指到的对象,即使没有任 ...

  8. [Django 1.5] Django 开发学习资源链接

    jQuery : jQuery API introduction:http://api.jquery.com/ jQuery plugins: http://benalman.com/projects ...

  9. 使用plist的好处

    首先:帮助节省内存.OpenGL ES纹理要求宽和高都是2的n次幂的倍数.我们可以考虑将小的图片拼大图片,然后统一加载.  其次:提高渲染速度.OpenGL ES要求切换的纹理越少越好,将图片拼成大图 ...

  10. 设置高级的Logstash 管道

    设置高级的Logstash 管道: 一个Logstash 管道在很多实用例子有一个或者多个输入,filter,和output 插件. 本节中 创建Logstash 配置文件来指定那些插件和讨论每个插件 ...