Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6104    Accepted Submission(s):
2546

Problem Description
There are many secret openings in the floor which are
covered by a big heavy stone. When the stone is lifted up, a special mechanism
detects this and activates poisoned arrows that are shot near the opening. The
only possibility is to lift the stone very slowly and carefully. The ACM team
must connect a rope to the stone and then lift it using a pulley. Moreover, the
stone must be lifted all at once; no side can rise before another. So it is very
important to find the centre of gravity and connect the rope exactly to that
point. The stone has a polygonal shape and its height is the same throughout the
whole polygonal area. Your task is to find the centre of gravity for the given
polygon.
 
Input
The input consists of T test cases. The number of them
(T) is given on the first line of the input file. Each test case begins with a
line containing a single integer N (3 <= N <= 1000000) indicating the
number of points that form the polygon. This is followed by N lines, each
containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are
the coordinates of the i-th point. When we connect the points in the given
order, we get a polygon. You may assume that the edges never touch each other
(except the neighboring ones) and that they never cross. The area of the polygon
is never zero, i.e. it cannot collapse into a single line.
 
Output
Print exactly one line for each test case. The line
should contain exactly two numbers separated by one space. These numbers are the
coordinates of the centre of gravity. Round the coordinates to the nearest
number with exactly two digits after the decimal point (0.005 rounds up to
0.01). Note that the centre of gravity may be outside the polygon, if its shape
is not convex. If there is such a case in the input data, print the centre
anyway.
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
给n边形各点坐标,求其重心

算法一:在讲该算法时,先要明白下面几个定理。
定理1 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。它的重心坐标为:

  xg = (x1+x2+x3) / 3 ;                       yg = (y1+y2+y3) / 3 ;

定理2 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。该三角形的面积为:

  S =  ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;

  △A1A2A3 边界构成逆时针回路时取+ , 顺时针时取 -。

  另外在求解的过程中,不需要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。

  原理:将多边形划分成n个小区域, 每个小区域面积为σi ,重心为Gi ( . xi , . yi ) ,利用求平面薄板重心公式把积分变
  成累加和:

    

                  

    由前面所提出的原理和数学定理可以得出求离散数据点所围多边形的一般重心公式:以Ai ( xi , yi ) ( i = 1, 2, ., n) 为顶点的任意N边形A1A2 .An ,将它划    分成N - 2个三角形(如图1) 。每个三角形的重心为Gi ( . xi , . yi ) ,面积为σi。那么多边形的重心坐标G( .x2, .y2) 为:

  

                图1  多边形分解

 #include<cstdio>
#include<iostream>
using namespace std;
int main()
{
int T;
double ss,S,SX,SY;
double x,y;
double x0,y0,X,Y;
int n,i;
// freopen("in.txt","r",stdin);
cin>>T;
while(T--)
{
S=,SX=,SY=;
scanf("%d%lf%lf%lf%lf",&n,&x0,&y0,&X,&Y);
for(i=;i<n;i++)
{
scanf("%lf%lf",&x,&y);
ss=( (X - x0) * (y - y0) - (x -x0) * (Y - y0) ) / ;
S+=ss;
SX+=ss*(x0+x+X);
SY+=ss*(y0+Y+y);
X=x,Y=y;
}
printf("%.2f %.2f\n",SX/S/,SY/S/);
}
return ;
}

Lifting the Stone(hdoj1115)的更多相关文章

  1. [POJ 1385] Lifting the Stone (计算几何)

    题目链接:http://poj.org/problem?id=1385 题目大意:给你一个多边形的点,求重心. 首先,三角形的重心: ( (x1+x2+x3)/3 , (y1+y2+y3)/3 ) 然 ...

  2. Lifting the Stone(求多边形的重心—)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  3. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  5. POJ 1385 Lifting the Stone (多边形的重心)

    Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...

  6. HDU 4764 Stone(博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4764 题目大意:Tang和Jiang玩石子游戏,给定n个石子,每次取[1,k]个石子,最先取完的人失败 ...

  7. Stone(思维)

    链接:https://ac.nowcoder.com/acm/contest/893/D来源:牛客网 题目描述 有n堆石子排成一排,第i堆石子有aiai个石子. 每次,你可以选择任意相邻的两堆石子进行 ...

  8. POJ 1740 A New Stone Game(博弈)题解

    题意:有n个石子堆,每一个都可以轮流做如下操作:选一个石堆,移除至少1个石子,然后可以把这堆石子随便拿几次,随便放到任意的其他石子数不为0的石子堆,也可以不拿.不能操作败. 思路:我们先来证明,如果某 ...

  9. 【BZOJ2138】stone(线段树,Hall定理)

    [BZOJ2138]stone(线段树,Hall定理) 题面 BZOJ 题解 考虑一个暴力. 我们对于每堆石子和每个询问,显然是匹配的操作. 所以可以把石子拆成\(a_i\)个,询问点拆成\(K_i\ ...

随机推荐

  1. 用IO流拷贝歌曲

    package lianxi; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOEx ...

  2. FATE(费用背包,没懂)

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  3. C++----练习--引用头文件

    1.创建头文件和源文件 touch /tmp/tools.h touch /tmp/main.cpp 2.各文件的内容如下: tools.h #include<iostream> void ...

  4. Qt学习(四)—实例涂鸦画板mspaint

    一.Qt图形绘制 自己在Qt开源社区在自学yafeilinux前辈的<Qt快速入门系列教程>中的图形篇,结合所学的知识,可以做一个涂鸦板实例 二.实现涂鸦板 1.新建工程mspaint, ...

  5. WPF笔记(1.4 布局)——Hello,WPF!

    原文:WPF笔记(1.4 布局)--Hello,WPF! 这一节只是第2章的引子.布局要使用Panel控件,有四种Panel,如下:DockPanel,就是设置停靠位置布局模型.StackPanel, ...

  6. [置顶] SPL讲解(7)--Query高级篇

    SmartPersistenceLayer 2.0 之Query高级查询篇 总述 在看了前面的功能后,大家都会考虑到多表之间的查询怎么办.在这里,我想先讲一下查询在应用系统中的复杂性/重要性/可行性. ...

  7. 2015第10周三jquery ui position

    jQuery UI API - .position() 所属类别 方法重载(Method Overrides) | 方法(Methods) | 实用工具(Utilities) 用法 描述:相对另一个元 ...

  8. Types of Binary Tree

    Complete Binary Tree According to wiki, A complete binary tree is a binary tree in which every level ...

  9. HTML5 Canvas Arc Tutorial

    HTML5 Canvas Arc Tutorial HTML5 Canvas Arc Tutorial  

  10. D-Separation(D分离)

    是属于 Bayesian network 中的概念