1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

Description

为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。 第i头奶牛有一张标明她用餐批次D_i(1 <= D_i <= 3)的卡片。虽然所有N(1 <= N <= 30,000)头奶牛排成了很整齐的队伍但谁都看得出来,卡片上的号码是完全杂乱无章的。 在若干次混乱的重新排队后,FJ找到了一种简单些的方法:奶牛们不动,他沿着队伍从头到尾走一遍把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个他想要的每个组中的奶牛都站在一起的队列,例如111222333或者333222111。哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让所有奶牛向后转,然后按正常顺序进入餐厅。 你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。

Input

第1行: 1个整数:N 第2..N+1行: 第i+1行是1个整数,为第i头奶牛的用餐批次D_i

Output

第1行: 输出1个整数,为FJ最少要改几头奶牛卡片上的编号,才能让编号变成他设想中的样子

Sample Input

5
1
3
2
1
1
输入说明:

队列中共有5头奶牛,第1头以及最后2头奶牛被设定为第一批用餐,第2头奶牛的预设是第三批用餐,第3头则为第二批用餐。

Sample Output

1

输出说明:

如果FJ想把当前队列改成一个不下降序列,他至少要改2头奶牛的编号,一种可行的方案是:把队伍中2头编号不是1的奶牛的编号都改成1。不过,如果FJ选择把第1头奶牛的编号改成3就能把奶牛们的队伍改造成一个合法的不上升序列了。

——我是华丽的分割线——

这道题目大约是一个DP,很好想。F[i][j]表示符合要求到第i位且第i位为j的最少修改次数。不过要记得,正过来DP一遍,再把序列反过来DP一遍。

代码:

#include<cstdio>
#include<cstring>
using namespace std;
int n;
int Num[30010];
int ReNum[30010];
int f[30010][4]; inline int remin(int a,int b){
if (a<b) return a;
return b;
} int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%d",&Num[i]); memset(f,127,sizeof(f));
f[0][1]=f[0][2]=f[0][3]=0; for (int i=1;i<=n;i++){
for(int k=1;k<=3;k++){
for (int j=1;j<=k;j++){
int delta=(Num[i]==k)?0:1;
f[i][k]=remin(f[i][k],f[i-1][j]+delta);
}
}
} int Ans=remin(remin(f[n][1],f[n][2]),f[n][3]); memset(f,127,sizeof(f));
f[0][1]=f[0][2]=f[0][3]=0; for (int i=n;i>=1;i--) ReNum[n-i+1]=Num[i];
for (int i=1;i<=n;i++){
for(int k=1;k<=3;k++){
for (int j=1;j<=k;j++){
int delta=(ReNum[i]==k)?0:1;
f[i][k]=remin(f[i][k],f[i-1][j]+delta);
}
}
} Ans=remin(remin(remin(f[n][1],f[n][2]),f[n][3]),Ans); printf("%d\n",Ans); return 0;
}

BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐的更多相关文章

  1. Bzoj 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 二分

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1272  Solve ...

  2. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐( LIS )

    求LIS , 然后用 n 减去即为answer ---------------------------------------------------------------------------- ...

  3. BZOJ 1609 [Usaco2008 Feb]Eating Together麻烦的聚餐:LIS & LDS (nlogn)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1609 题意: 给你一个只由数字"1,2,3"组成的序列a[i],共n个 ...

  4. bzoj 1609[Usaco2008 Feb]Eating Together麻烦的聚餐【dp】

    设up[i][j]为第i位升序为j的最小修改数,down为降序 #include<iostream> #include<stdio.h> using namespace std ...

  5. 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 1010  Solv ...

  6. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐(dp+被坑)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1609 首先我不得不说,我被这题坑了.题目前边没有说可以不需要3种牛都有啊!!!!!!!!然后我一直在 ...

  7. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    [算法]动态规划 [题解]DP有个特点(递推的特点),就是记录所有可能状态然后按顺序转移. 最优化问题中DP往往占据重要地位. f[i][j]表示前i头奶牛,第i头改为号码j的最小改动数字,这样每头奶 ...

  8. BZOJ1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 938  Solved ...

  9. [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

随机推荐

  1. https://github.com/coolnameismy/BabyBluetooth github上的一个ios 蓝牙4.0的库并带文档和教程

    The easiest way to use Bluetooth (BLE )in ios,even bady can use. 简单易用的蓝牙库,基于CoreBluetooth的封装,并兼容ios和 ...

  2. iPhone开发之全局变量的使用

    全局变量历来就是很好的东西,能够在开发中带来很多方便,下面来介绍一下iPhone中软件开发时全局变量的使用方法: 一.新建Constants.h文件(文件名根据需要自己取),用于存放全局变量: 二.在 ...

  3. 倒计时IE6+

    很简单的 下面是我为了做多个倒计时更改之后的 dome 下载链接   兼容 IE7以上 IE6没测试应该没问题 http://yunpan.cn/cf29rxmGKuMyJ  提取码 ca61

  4. Uploadif稍做扩展使用

    文章出自Uploadify扩展配置使用http://www.wuyinweb.com/doc/52/57.aspx 在做项目中涉及多文件上传,经过筛选,选择了Uploaidify,但还涉及一个问题,就 ...

  5. Session累计用户数据列表

    OrderForm.html <body>  <center>  <h1 ><font size="20">Order Items& ...

  6. BZOJ 1191: [HNOI2006]超级英雄Hero(二分图匹配)

    云神说他二分图匹配从来都是用网络流水过去的...我要发扬他的精神.. 这道题明显是二分图匹配.网络流的话可以二分答案+最大流.虽然跑得很慢.... -------------------------- ...

  7. C语言实现约瑟夫环讨论

    [问题描述]     约瑟夫(Joseph)问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数).一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针 ...

  8. php命名空间及和autoload结合使用问题。

    在讨论如何使用命名空间之前,必须了解 PHP 是如何知道要使用哪一个命名空间中的元素的.可以将 PHP 命名空间与文件系统作一个简单的类比.在文件系统中访问一个文件有三种方式: 相对文件名形式如foo ...

  9. opencv-python 学习笔记2:实现目光跟随(又叫人脸跟随)

    如果机器人的脸能随着前方人脸而转动,你会不会觉得这种互动很有意思.年前的时候,学习了一下opencv,通过opencv可以简单的实现人脸跟随.再加上几个舵机控制头部转动,机器人就可以互动了.呵呵 这里 ...

  10. PhoneGap 开发笔记

    1 调死调活都调不出来的情况下,可以考虑更换下phoneGap 版本,尽量用比较新的版本. 2 form submit 会返回 3 jquery mobile 的4个初始化事件 第一个触发的事件是mo ...