【BZOJ 2351】Matrix(Hash)
题目链接
二维\(Hash\)类似二维前缀和,每一行看成一个\(h\)进制数,每一个以(1,1)为左上角的矩阵看成一个由每一行的\(Hash\)值组成的\(l\)进制数。
然后自己推推柿子就行。
#include <cstdio>
#include <cstring>
#include <map>
using namespace std;
#define Open(s) freopen(s".in","r",stdin); freopen(s".out","w",stdout);
#define h 1331
#define l 2333
int n, m, r, c, T;
map <unsigned long long, int> mp;
unsigned long long hs[1010][1010], ph[1010], pl[1010], xs[1010][1010];
char ch;
int main(){
Open("matrix"); ph[0] = pl[0] = 1;
scanf("%d%d%d%d", &n, &m, &r, &c);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j){
ch = getchar();
while(ch != '0' && ch != '1') ch = getchar();
hs[i][j] = hs[i][j - 1] * h + ch;
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
hs[i][j] += hs[i - 1][j] * l;
for(int i = 1; i <= m; ++i) ph[i] = ph[i - 1] * h;
for(int i = 1; i <= n; ++i) pl[i] = pl[i - 1] * l;
for(int i = r; i <= n; ++i)
for(int j = c; j <= m; ++j)
mp[hs[i][j] - hs[i - r][j] * pl[r] - hs[i][j - c] * ph[c] + hs[i - r][j - c] * pl[r] * ph[c]] = 1;
scanf("%d", &T);
while(T--){
for(int i = 1; i <= r; ++i)
for(int j = 1; j <= c; ++j)
xs[i][j] = 0;
for(int i = 1; i <= r; ++i)
for(int j = 1; j <= c; ++j){
ch = getchar();
while(ch != '0' && ch != '1') ch = getchar();
xs[i][j] = xs[i][j - 1] * h + ch;
}
for(int i = 1; i <= r; ++i)
for(int j = 1; j <= c; ++j)
xs[i][j] += xs[i - 1][j] * l;
printf("%d\n", mp[xs[r][c]]);
}
return 0;
}
【BZOJ 2351】Matrix(Hash)的更多相关文章
- 【BZOJ 2351】 Matrix
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2351 [算法] 哈希 [代码] #include<bits/stdc++.h& ...
- 【noi 2.6_9275】&【bzoj 3398】Bullcow(DP){Usaco2009 Feb}
题意:一共有N只牡牛(公牛)和牝牛(母牛),每2只牡牛间至少要有K只牝牛才不会斗殴.问无斗殴发生的方案数. 解法:f[i][j]表示一共i只牛,最后一只是j(0为牝牛,1为牡牛)的方案数.f[i][0 ...
- 【POJ - 3685】Matrix(二分)
Matrix Descriptions 有一个N阶方阵 第i行,j列的值Aij =i2 + 100000 × i + j2 - 100000 × j + i × j,需要找出这个方阵的第M小值. In ...
- 【POJ - 2078】Matrix(dfs)
-->Matrix Descriptions: 输入一个n×n的矩阵,可以对矩阵的每行进行任意次的循环右移操作,行的每一次右移后,计算矩阵中每一列的和的最大值,输出这些最大值中的最小值. Sam ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 【UOJ#311】【UNR #2】积劳成疾(动态规划)
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...
- 【UOJ#246】套路(动态规划)
[UOJ#246]套路(动态规划) 题面 UOJ 题解 假如答案的选择的区间长度很小,我们可以做一个暴力\(dp\)计算\(s(l,r)\),即\(s(l,r)=min(s(l+1,r),s(l,r- ...
- 【LOJ#6074】子序列(动态规划)
[LOJ#6074]子序列(动态规划) 题面 LOJ 题解 考虑一个暴力\(dp\). 设\(f[i][c]\)表示当前在第\(i\)位,并且以\(c\)结尾的子序列个数. 那么假设当前位为\(a\) ...
- 通俗地说逻辑回归【Logistic regression】算法(二)sklearn逻辑回归实战
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklear ...
随机推荐
- [RoarCTF]Easy Calc
目录 [RoarCTF]Easy Calc 知识点 1.http走私绕过WAF 2.php字符串解析特性绕过WAF 3.绕过过滤写shell [RoarCTF]Easy Calc 题目复现链接:htt ...
- 20189220 余超《Linux内核原理与分析》第四周作业
构造一个简单的Linux系统MenuOS 第三章基础知识 计算机的三大法宝:存储计算机,函数调用堆栈,中断. 操作系统的两把宝剑:中断上下文,进程上下文. Linux内核源码的目录结构: arch目录 ...
- ssm框架中,项目启动过程以及web.xml配置详解
原文:https://blog.csdn.net/qq_35571554/article/details/82385838 本篇主要在基于SSM的框架,深入讲解web.xml的配置 web.xml ...
- 【转】怎么去阅读Chromium的源码?
同样路过一下. 从初学者角度的话,如果是刚开始研究chromium,建议找个老版本chromium来看.新版太大太复杂了. 我建议从github搜下chromium.bb这个项目,是个chromium ...
- 日期正则表达式yyyyMMdd
日期校验yyyyMMdd, 包括闰月等校验. package com.xgcd; import java.util.regex.Matcher; import java.util.regex.Patt ...
- 最稳定万能vip视频解析接口 支持HTTPS
最稳定万能vip视频解析接口 支持HTTPS https://cdn.yangju.vip/k/?url=后面加上播放的地址即可 https://cdn.yangju.vip/k/?url= http ...
- 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
张宁 Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...
- 通过SOCKS代理渗透整个内网
https://blog.csdn.net/SouthWind0/article/details/83111044 通过SOCKS代理渗透整个内网 1.背景 经过前期的渗透工作,我们现在已经成功找到了 ...
- DateUtil(2)
import java.sql.Timestamp; import java.text.ParseException; import java.text.SimpleDateFormat; impor ...
- 有相关性就有因果关系吗,教你玩转孟德尔随机化分析(mendelian randomization )
流行病学研究常见的分析就是相关性分析了. 相关性分析某种程度上可以为我们提供一些研究思路,比如缺乏元素A与某种癌症相关,那么我们可以通过补充元素A来减少患癌率.这个结论的大前提是缺乏元素A会导致这种癌 ...