P5431 【【模板】乘法逆元2】
卡常毒瘤题。交了一页的我。
首先容易想出暴力的做法,直接逆元累加,复杂度\(O(nlogn)\)。
for(register int i=1;i<=n;++i){
ll a=read();
ans=(ans%p+qp(k,i)*qp(a,p-2)%p)%p;
}
我第一次交就直接这样子,憨憨,连\(k\)都不优化一下。
作为一道毒瘤题,她(指鱼鱼)怎么可能这么简单地就让你过了呢(详见讨论)??
我们需要寻找线性复杂度算法。
首先考虑为什么渐进复杂度里有个\(log\),是因为每次累加我们都\(O(logn)\)地求了逆元。
换个思路,如果我们把所求式子都通分,先把分子乘起来,最后再乘上\(\sum_{i=1}^na_i \pmod p\)的逆元,不就不用除那么多次了吗。
设\(s=\sum_{i=1}^na_i\),则有
\]
但是分子又出现了除法,如果直接求逆元又退化到了\(O(nlogn)\)。考虑维护\(a\)的前缀、后缀积\(h[],t[]\),那么\(\frac{s}{a_i}=h[i-1]*t[i+1]\)。预处理之后即可线性求解。
for(register int i=1;i<=n;++i){
ans=(ans+k*(h[i-1]*t[i+1]%p))%p;
k=(k*q)%p;
}
这样。
卡卡常,多用int,少%,这道题就惨痛地A了。
P5431 【【模板】乘法逆元2】的更多相关文章
- 【洛谷P3811】[模板]乘法逆元
乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...
- P5431 【模板】乘法逆元2
洛谷题目链接 刚开始做乘法逆元还是有点懵逼的~ 以下式子都在模\(p\)意义下进行 我们把式子改一下,变成:\[\sum\limits_{i=1}^nk^i\times a_i^{-1}\] 我们先算 ...
- 逆元-P3811 【模板】乘法逆元-洛谷luogu
https://www.cnblogs.com/zjp-shadow/p/7773566.html -------------------------------------------------- ...
- P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 线性递推逆元模板 #include<iostream> #include<cstdio> #include<cstring> #def ...
- [洛谷P3811]【模板】乘法逆元
P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...
- 模板【洛谷P3811】 【模板】乘法逆元
P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...
- luogu P3811 【模板】乘法逆元
题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...
- 洛谷 P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...
- 洛谷——P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...
- 洛谷—— P3811 【模板】乘法逆元
https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...
随机推荐
- 1-3docker commit定制镜像
以定制⼀个 Web 服务器为例⼦ 1.commit定制镜像 docker pull nginx:1.17 运行容器 --name:容器名字 -d:后台 -p本地端口:容器内端口 docker ru ...
- idea 添加自定义的todo标签
背景:idea添加自定义的todo标签可以提高开发效率,搞之 在idea定义个人风格的todo IDEA自定义TODO注释 主要分为如下两步 自定义todo标签 settings>Editor& ...
- springboot 读取Jar 类路径下的文件
Resource resource = new DefaultResourceLoader().getResource("classpath:download/WORKER_OVERTIME ...
- mysql 多个字段的查询处理
https://blog.csdn.net/zzzgd_666/article/details/81101548
- Codeforces Round #604
Beautiful Regional Contest 题意 题解 代码 Beautiful Sequence 题意 题解 代码 一个思路不够清晰的代码 Beautiful Mirrors with q ...
- 我瞅瞅源码系列之---flask
快速使用 通过werkzurg 了解wsgi threading.local和高级 LocalStack和Local对象实现栈的管理 Flask源码之:配置加载 Flask源码之:路由加载 ...
- C++ Primer 第五版示例gcc源码
官方资源,原封不动的.对应于GCC,因此文件名是以此命名的. 门牌号: https://github.com/ZeroPhong/Learning-Resource/blob/master/GCC_4 ...
- 【leetcode】590. N-ary Tree Postorder Traversal
Recurisve: /* // Definition for a Node. class Node { public: int val; vector<Node*> children; ...
- Go基础编程实践(二)—— 类型转换
bool to string strconv包的FormatBool函数用于将bool转为string package main import ( "fmt" "strc ...
- 【题解】Luogu P5337 [TJOI2019]甲苯先生的字符串
原题传送门 我们设计一个\(26*26\)的矩阵\(A\)表示\(a~z\)和\(a~z\)是否能够相邻,这个矩阵珂以由\(s1\)得出.答案显然是矩阵\(A^{len_{s2}-1}\)的所有元素之 ...