【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell
Spark 基础入门,集群搭建以及Spark Shell
主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践。








































Spark 安装部署




















理论已经了解的差不多了,接下来是实际动手实验:
练习1 利用Spark Shell(本机模式) 完成WordCount
spark-shell 进行Spark-shell本机模式

第一步:通过文件方式导入数据
scala> val rdd1 = sc.textFile("file:///tmp/wordcount.txt")
rdd1: org.apache.spark.rdd.RDD[String] = file:///tmp/wordcount.txt MapPartitionsRDD[3] at textFile at <console>:24
scala> rdd1.count
res1: Long = 3

第二步:利用flatmap(_.split(" ")) 进行分词操作
scala> val rdd2 = rdd1.flatMap(_.split(" "))
rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[4] at flatMap at <console>:26
scala> rdd2.count
res2: Long = 8
scala> rdd2.take
take takeAsync takeOrdered takeSample
scala> rdd2.take(8)
res3: Array[String] = Array(hello, world, spark, world, hello, spark, hadoop, great)

第三步:利用map 转化为KV的形式
scala> val kvrdd1 = rdd2.map(x => (x,1))
kvrdd1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[5] at map at <console>:28
scala> kvrdd1.count
res4: Long = 8
scala> kvrdd1.take(8)
res5: Array[(String, Int)] = Array((hello,1), (world,1), (spark,1), (world,1), (hello,1), (spark,1), (hadoop,1), (great,1))

第四步:把KV的map进行ReduceByKey操作
scala> val resultRdd1 = kvrdd1.reduceByKey(_+_)
resultRdd1: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[6] at reduceByKey at <console>:30
scala> resultRdd1.count
res6: Long = 5
scala> resultRdd1.take(5)
res7: Array[(String, Int)] = Array((hello,2), (world,2), (spark,2), (hadoop,1), (great,1))

第五步:将结果保持到文件之中
scala> resultRdd1.saveAsTextFile("file:///tmp/output1")

练习2 利用Spark Shell(Yarn Client模式) 完成WordCount
spark-shell --master yarn-client 启动Spark-shell Yarn Client模式

第一步:通过文件方式导入数据
scala> val rdd1 = sc.textFile("hdfs:///input/wordcount.txt")
rdd1: org.apache.spark.rdd.RDD[String] = hdfs:///input/wordcount.txt MapPartitionsRDD[1] at textFile at <console>:24
scala> rdd1.count
res0: Long = 260
scala> rdd1.take(100)
res1: Array[String] = Array(HDFS Users Guide, "", HDFS Users Guide, Purpose, Overview, Prerequisites, Web Interface, Shell Commands, DFSAdmin Command, Secondary NameNode, Checkpoint Node, Backup Node, Import Checkpoint, Balancer, Rack Awareness, Safemode, fsck, fetchdt, Recovery Mode, Upgrade and Rollback, DataNode Hot Swap Drive, File Permissions and Security, Scalability, Related Documentation, Purpose, "", This document is a starting point for users working with Hadoop Distributed File System (HDFS) either as a part of a Hadoop cluster or as a stand-alone general purpose distributed file system. While HDFS is designed to “just work” in many environments, a working knowledge of HDFS helps greatly with configuration improvements and diagnostics on a specific cluster., "", Overview, "",...

第二步:利用flatmap(_.split(" ")) 进行分词操作
scala> val rdd2 = rdd1.flatMap(_.split(" "))
rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at flatMap at <console>:26
scala> rdd2.count
res2: Long = 3687
scala> rdd2.take(100)
res3: Array[String] = Array(HDFS, Users, Guide, "", HDFS, Users, Guide, Purpose, Overview, Prerequisites, Web, Interface, Shell, Commands, DFSAdmin, Command, Secondary, NameNode, Checkpoint, Node, Backup, Node, Import, Checkpoint, Balancer, Rack, Awareness, Safemode, fsck, fetchdt, Recovery, Mode, Upgrade, and, Rollback, DataNode, Hot, Swap, Drive, File, Permissions, and, Security, Scalability, Related, Documentation, Purpose, "", This, document, is, a, starting, point, for, users, working, with, Hadoop, Distributed, File, System, (HDFS), either, as, a, part, of, a, Hadoop, cluster, or, as, a, stand-alone, general, purpose, distributed, file, system., While, HDFS, is, designed, to, “just, work”, in, many, environments,, a, working, knowledge, of, HDFS, helps, greatly, with, configuratio...

第三步:利用map 转化为KV的形式
scala> val kvrdd1 = rdd2.map(x => (x,1))
kvrdd1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[3] at map at <console>:28
scala> kvrdd1.count
res4: Long = 3687
scala> kvrdd1.take(100)
res5: Array[(String, Int)] = Array((HDFS,1), (Users,1), (Guide,1), ("",1), (HDFS,1), (Users,1), (Guide,1), (Purpose,1), (Overview,1), (Prerequisites,1), (Web,1), (Interface,1), (Shell,1), (Commands,1), (DFSAdmin,1), (Command,1), (Secondary,1), (NameNode,1), (Checkpoint,1), (Node,1), (Backup,1), (Node,1), (Import,1), (Checkpoint,1), (Balancer,1), (Rack,1), (Awareness,1), (Safemode,1), (fsck,1), (fetchdt,1), (Recovery,1), (Mode,1), (Upgrade,1), (and,1), (Rollback,1), (DataNode,1), (Hot,1), (Swap,1), (Drive,1), (File,1), (Permissions,1), (and,1), (Security,1), (Scalability,1), (Related,1), (Documentation,1), (Purpose,1), ("",1), (This,1), (document,1), (is,1), (a,1), (starting,1), (point,1), (for,1), (users,1), (working,1), (with,1), (Hadoop,1), (Distributed,1), (File,1), (System,1), ((HDF...

第四步:把KV的map进行ReduceByKey操作
scala> var resultRdd1 = kvrdd1.reduce
reduce reduceByKey reduceByKeyLocally
scala> var resultRdd1 = kvrdd1.reduceByKey
reduceByKey reduceByKeyLocally
scala> var resultRdd1 = kvrdd1.reduceByKey(_+_)
resultRdd1: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:30
scala> resultRdd1.count
res6: Long = 1084
scala> resultRdd1.take(100)
res7: Array[(String, Int)] = Array((Because,1), (-reconfig,2), (guide,4), (under-replicated,1), (blocks,5), (maintained,1), (responsibility,1), (filled,1), (order,5), ([key-value,1), (prematurely,1), (cluster:,1), (type,1), (behind,1), (However,,1), (competing,1), (been,2), (begins,1), (up-to-date,3), (Permissions,3), (browse,1), (List:,1), (improved,1), (Balancer,2), (fine.,1), (over,1), (dfs.hosts,,2), (any,7), (connect,1), (select,2), (version,7), (disks.,1), (file,33), (documentation,,1), (file.,7), (performs,2), (million,2), (RAM,1), (are,27), ((data,1), (supported.,1), (consists,1), (existed,1), (brief,2), (overwrites,1), (safely,1), (Guide:,1), (Safemode,6), (Only,1), (Currently,1), (first-time,1), (dfs.namenode.name.dir,1), (thus,2), (salient,1), (query,1), (page).,1), (status,5...

第五步:将结果保持到HDFS文件之中
scala> resultRdd1.saveAsTextFile("hdfs:///output/wordcount1")

localhost:tmp jonsonli$ hadoop fs -ls /output/wordcount1
17/05/13 17:49:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
-rw-r--r-- 1 jonsonli supergroup 0 2017-05-13 17:47 /output/wordcount1/_SUCCESS
-rw-r--r-- 1 jonsonli supergroup 6562 2017-05-13 17:47 /output/wordcount1/part-00000
-rw-r--r-- 1 jonsonli supergroup 6946 2017-05-13 17:47 /output/wordcount1/part-00001






【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell的更多相关文章
- Spark集群搭建【Spark+Hadoop+Scala+Zookeeper】
1.安装Linux 需要:3台CentOS7虚拟机 IP:192.168.245.130,192.168.245.131,192.168.245.132(类似,尽量保持连续,方便记忆) 注意: 3台虚 ...
- Standalone集群搭建和Spark应用监控
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6815920501530034696/ 承接上一篇文档<Spark词频前十的统计练习> Spark on ...
- hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境
[手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...
- hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境 Hadoop Volume 配置
[手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...
- Hadoop框架:单服务下伪分布式集群搭建
本文源码:GitHub·点这里 || GitEE·点这里 一.基础环境 1.环境版本 环境:centos7 hadoop版本:2.7.2 jdk版本:1.8 2.Hadoop目录结构 bin目录:存放 ...
- ELK 之一:ElasticSearch 基础和集群搭建
一:需求及基础: 场景: 1.开发人员不能登录线上服务器查看详细日志 2.各个系统都有日志,日志数据分散难以查找 3.日志数据量大,查询速度慢,或者数据不够实时 4.一个调用会涉及到多个系统,难以在这 ...
- 集群搭建之Spark配置要点解析
注意点: 安装Spark前先要配置好Scala运行环境. Spark和Scala需要在各个机器上配置. 环境变量配置 在~/.bashrc中添加如下的配置信息. #scala conf export ...
- spark学习(1)--ubuntu14.04集群搭建、配置(jdk)
环境:ubuntu14.04 jdk-8u161-linux-x64.tar.gz 1.文本模式桌面模式切换 ctrl+alt+F6 切换到文本模式 ctrl + alt +F7 /输入命令start ...
- 【实践】Matlab2016a的mdce集群搭建
Matlab R2016a的mdce集群搭建 1.解压文件Matlab_R2016b_win64.iso. 文件下载地址:链接:https://pan.baidu.com/s/1mjJOaHa 密码: ...
随机推荐
- 在Adobe Html5 Extension的使用Nodejs的问题
前情回顾 之前为一个客户开发过一个基于Adobe Premiere的Html5扩展.原本是在Adobe Premiere Pro 2015下面进行调试开发的.一切进展的非常顺利,功能也都正常.但是20 ...
- linux 硬盘分区与格式化挂载 (二)
1. 文件系统的挂载与卸载(详见linux系统管理P406)1) 掌握挂载的定义:挂载指将一个设备(通常是存储设备)挂接到一个已存在的目录上.2) 掌握mount命令的功能:实现文件系统的挂载.3) ...
- ubuntu下使用nvm安装nodejs
sudo apt-get install curl curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.6/install. ...
- TypeScript语法学习--基本类型
查看官方文档手册:链接:https://www.tslang.cn/docs/home.html (一)Boolean 最基本的数据类型就是简单的true/false值 The most basic ...
- 和textrank4ZH代码一模一样的算法详细解读
前不久做了有关自动文摘的学习,采用方法是TextRank算法,整理和大家分享. 一. 关于自动文摘 利用计算机将大量的文本进行处理,产生简洁.精炼内容的过程就是文本摘要,人们可通过阅读摘要来把握文本主 ...
- SqlHelper分享
using Model; using System; using System.Collections.Generic; using System.Configuration; using Syste ...
- python函数之协程与面向过程编程
第一:协程 初步了解协程 def eater(): print('start to eat') while True: food=yield print('is eating food:%s'%foo ...
- JSP(3)—Cookie和Session
HTTP是一个无状态的协议,web服务器无法分辨出那些请求是同一个浏览器发出的,浏览器每一次请求都是孤立的 即使HTTP1.1支持持续链接,但当用户有一段时间没有请求时,连接也会关闭. 如何实现网上的 ...
- jQuery 学习04——遍历:定义、向上、向下、同级、过滤
Query 遍历,意为"移动",用于根据其相对于其他元素的关系来"查找"(或选取)HTML 元素. 以某项选择开始,并沿着这个选择移动,直到抵达您期望的元素为止 ...
- vue路由打开新窗口
一. <router-link>标签实现新窗口打开: 官方文档中说 v-link 指令被 <router-link> 组件指令替代,且 <router-link> ...