Spark 基础入门,集群搭建以及Spark Shell

主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践。

Spark 安装部署

理论已经了解的差不多了,接下来是实际动手实验:

练习1 利用Spark Shell(本机模式) 完成WordCount

spark-shell 进行Spark-shell本机模式

第一步:通过文件方式导入数据

scala> val rdd1 = sc.textFile("file:///tmp/wordcount.txt")
rdd1: org.apache.spark.rdd.RDD[String] = file:///tmp/wordcount.txt MapPartitionsRDD[3] at textFile at <console>:24

scala> rdd1.count
res1: Long = 3

第二步:利用flatmap(_.split(" ")) 进行分词操作

scala> val rdd2 = rdd1.flatMap(_.split(" "))
rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[4] at flatMap at <console>:26

scala> rdd2.count
res2: Long = 8

scala> rdd2.take
take takeAsync takeOrdered takeSample

scala> rdd2.take(8)
res3: Array[String] = Array(hello, world, spark, world, hello, spark, hadoop, great)

第三步:利用map 转化为KV的形式

scala> val kvrdd1 = rdd2.map(x => (x,1))
kvrdd1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[5] at map at <console>:28

scala> kvrdd1.count
res4: Long = 8

scala> kvrdd1.take(8)
res5: Array[(String, Int)] = Array((hello,1), (world,1), (spark,1), (world,1), (hello,1), (spark,1), (hadoop,1), (great,1))

第四步:把KV的map进行ReduceByKey操作

scala> val resultRdd1 = kvrdd1.reduceByKey(_+_)
resultRdd1: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[6] at reduceByKey at <console>:30

scala> resultRdd1.count
res6: Long = 5

scala> resultRdd1.take(5)
res7: Array[(String, Int)] = Array((hello,2), (world,2), (spark,2), (hadoop,1), (great,1))

第五步:将结果保持到文件之中

scala> resultRdd1.saveAsTextFile("file:///tmp/output1")

练习2 利用Spark Shell(Yarn Client模式) 完成WordCount

spark-shell --master yarn-client 启动Spark-shell Yarn Client模式

第一步:通过文件方式导入数据

scala> val rdd1 = sc.textFile("hdfs:///input/wordcount.txt")
rdd1: org.apache.spark.rdd.RDD[String] = hdfs:///input/wordcount.txt MapPartitionsRDD[1] at textFile at <console>:24

scala> rdd1.count
res0: Long = 260

scala> rdd1.take(100)
res1: Array[String] = Array(HDFS Users Guide, "", HDFS Users Guide, Purpose, Overview, Prerequisites, Web Interface, Shell Commands, DFSAdmin Command, Secondary NameNode, Checkpoint Node, Backup Node, Import Checkpoint, Balancer, Rack Awareness, Safemode, fsck, fetchdt, Recovery Mode, Upgrade and Rollback, DataNode Hot Swap Drive, File Permissions and Security, Scalability, Related Documentation, Purpose, "", This document is a starting point for users working with Hadoop Distributed File System (HDFS) either as a part of a Hadoop cluster or as a stand-alone general purpose distributed file system. While HDFS is designed to “just work” in many environments, a working knowledge of HDFS helps greatly with configuration improvements and diagnostics on a specific cluster., "", Overview, "",...

第二步:利用flatmap(_.split(" ")) 进行分词操作

scala> val rdd2 = rdd1.flatMap(_.split(" "))
rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at flatMap at <console>:26

scala> rdd2.count
res2: Long = 3687

scala> rdd2.take(100)
res3: Array[String] = Array(HDFS, Users, Guide, "", HDFS, Users, Guide, Purpose, Overview, Prerequisites, Web, Interface, Shell, Commands, DFSAdmin, Command, Secondary, NameNode, Checkpoint, Node, Backup, Node, Import, Checkpoint, Balancer, Rack, Awareness, Safemode, fsck, fetchdt, Recovery, Mode, Upgrade, and, Rollback, DataNode, Hot, Swap, Drive, File, Permissions, and, Security, Scalability, Related, Documentation, Purpose, "", This, document, is, a, starting, point, for, users, working, with, Hadoop, Distributed, File, System, (HDFS), either, as, a, part, of, a, Hadoop, cluster, or, as, a, stand-alone, general, purpose, distributed, file, system., While, HDFS, is, designed, to, “just, work”, in, many, environments,, a, working, knowledge, of, HDFS, helps, greatly, with, configuratio...

第三步:利用map 转化为KV的形式

scala> val kvrdd1 = rdd2.map(x => (x,1))
kvrdd1: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[3] at map at <console>:28

scala> kvrdd1.count
res4: Long = 3687

scala> kvrdd1.take(100)
res5: Array[(String, Int)] = Array((HDFS,1), (Users,1), (Guide,1), ("",1), (HDFS,1), (Users,1), (Guide,1), (Purpose,1), (Overview,1), (Prerequisites,1), (Web,1), (Interface,1), (Shell,1), (Commands,1), (DFSAdmin,1), (Command,1), (Secondary,1), (NameNode,1), (Checkpoint,1), (Node,1), (Backup,1), (Node,1), (Import,1), (Checkpoint,1), (Balancer,1), (Rack,1), (Awareness,1), (Safemode,1), (fsck,1), (fetchdt,1), (Recovery,1), (Mode,1), (Upgrade,1), (and,1), (Rollback,1), (DataNode,1), (Hot,1), (Swap,1), (Drive,1), (File,1), (Permissions,1), (and,1), (Security,1), (Scalability,1), (Related,1), (Documentation,1), (Purpose,1), ("",1), (This,1), (document,1), (is,1), (a,1), (starting,1), (point,1), (for,1), (users,1), (working,1), (with,1), (Hadoop,1), (Distributed,1), (File,1), (System,1), ((HDF...

第四步:把KV的map进行ReduceByKey操作

scala> var resultRdd1 = kvrdd1.reduce
reduce reduceByKey reduceByKeyLocally

scala> var resultRdd1 = kvrdd1.reduceByKey
reduceByKey reduceByKeyLocally

scala> var resultRdd1 = kvrdd1.reduceByKey(_+_)
resultRdd1: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:30

scala> resultRdd1.count
res6: Long = 1084

scala> resultRdd1.take(100)
res7: Array[(String, Int)] = Array((Because,1), (-reconfig,2), (guide,4), (under-replicated,1), (blocks,5), (maintained,1), (responsibility,1), (filled,1), (order,5), ([key-value,1), (prematurely,1), (cluster:,1), (type,1), (behind,1), (However,,1), (competing,1), (been,2), (begins,1), (up-to-date,3), (Permissions,3), (browse,1), (List:,1), (improved,1), (Balancer,2), (fine.,1), (over,1), (dfs.hosts,,2), (any,7), (connect,1), (select,2), (version,7), (disks.,1), (file,33), (documentation,,1), (file.,7), (performs,2), (million,2), (RAM,1), (are,27), ((data,1), (supported.,1), (consists,1), (existed,1), (brief,2), (overwrites,1), (safely,1), (Guide:,1), (Safemode,6), (Only,1), (Currently,1), (first-time,1), (dfs.namenode.name.dir,1), (thus,2), (salient,1), (query,1), (page).,1), (status,5...

第五步:将结果保持到HDFS文件之中

scala> resultRdd1.saveAsTextFile("hdfs:///output/wordcount1")

localhost:tmp jonsonli$ hadoop fs -ls /output/wordcount1
17/05/13 17:49:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
-rw-r--r-- 1 jonsonli supergroup 0 2017-05-13 17:47 /output/wordcount1/_SUCCESS
-rw-r--r-- 1 jonsonli supergroup 6562 2017-05-13 17:47 /output/wordcount1/part-00000
-rw-r--r-- 1 jonsonli supergroup 6946 2017-05-13 17:47 /output/wordcount1/part-00001

【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell的更多相关文章

  1. Spark集群搭建【Spark+Hadoop+Scala+Zookeeper】

    1.安装Linux 需要:3台CentOS7虚拟机 IP:192.168.245.130,192.168.245.131,192.168.245.132(类似,尽量保持连续,方便记忆) 注意: 3台虚 ...

  2. Standalone集群搭建和Spark应用监控

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6815920501530034696/ 承接上一篇文档<Spark词频前十的统计练习> Spark on ...

  3. hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境

    [手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...

  4. hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境 Hadoop Volume 配置

    [手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...

  5. Hadoop框架:单服务下伪分布式集群搭建

    本文源码:GitHub·点这里 || GitEE·点这里 一.基础环境 1.环境版本 环境:centos7 hadoop版本:2.7.2 jdk版本:1.8 2.Hadoop目录结构 bin目录:存放 ...

  6. ELK 之一:ElasticSearch 基础和集群搭建

    一:需求及基础: 场景: 1.开发人员不能登录线上服务器查看详细日志 2.各个系统都有日志,日志数据分散难以查找 3.日志数据量大,查询速度慢,或者数据不够实时 4.一个调用会涉及到多个系统,难以在这 ...

  7. 集群搭建之Spark配置要点解析

    注意点: 安装Spark前先要配置好Scala运行环境. Spark和Scala需要在各个机器上配置. 环境变量配置 在~/.bashrc中添加如下的配置信息. #scala conf export ...

  8. spark学习(1)--ubuntu14.04集群搭建、配置(jdk)

    环境:ubuntu14.04 jdk-8u161-linux-x64.tar.gz 1.文本模式桌面模式切换 ctrl+alt+F6 切换到文本模式 ctrl + alt +F7 /输入命令start ...

  9. 【实践】Matlab2016a的mdce集群搭建

    Matlab R2016a的mdce集群搭建 1.解压文件Matlab_R2016b_win64.iso. 文件下载地址:链接:https://pan.baidu.com/s/1mjJOaHa 密码: ...

随机推荐

  1. suctf逆向部分

    自己真的菜,然后在网上找了一篇分析pyc反编译后的文件然后进行手撸opcode,过程真痛苦 http://www.wooy0ung.me/writeup/2017/10/11/0ctf-quals-2 ...

  2. pyV8不支持dom操作,关于PyV8的支持DOM的疑问

    https://www.cnblogs.com/zdz8207/p/python_learn_note_123.html

  3. 自定义sshd服务

    1.安装rsyslog服务和sshd服务并启动 2.配置日志文件    vim /etc/rsyslog.conf        在里面添加一行 local*.    /var/log/sshd.lo ...

  4. 简单分析Java中审批业务流程业务原理

  5. [JOISC2014]たのしい家庭菜園

    [JOISC2014]たのしい家庭菜園 题目大意: 给定一个长度为\(n(n\le3\times10^5)\)的序列\(A(A_i\le10^9)\).只能交换相邻两个数,问最少需要几步可以将它变成一 ...

  6. Vue.js的初步使用

    1.声明式渲染 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  7. (转)为什么不能从静态的方法里面调用非静态方法,或变量and类加载机制

    1. 程序最终都将在内存中执行,变量只有在内存中占有一席之地时才能被访问. 类的静态成员(变量和方法)属于类本身,在类加载的时候就会分配内存,可以通过类名直接去访问:非静态成员(变量和方法)属于类的对 ...

  8. JS面向对象之创建对象模式

    虽然Object构造函数或对象字面量都可以用来创建单个对象,但都有一个缺点,使用同一个接口来创建对象,会产生大量重复的代码,为解决这个问题,引出下列方法 1.工厂模式 抽象了创建具体对象的过程,用函数 ...

  9. ionic2 (真正)修改应用图标和启动画面

    今天在用ionic2 的ionic resources生成新的icon和splash,生成后安装,应用图标和启动画面依然没变化... 不知道大家有没有被坑过,今天被坑了一下午,终于找到了办法: 解决方 ...

  10. Oracle数据库访问其他用户下的表,不加表所属的用户名的实现方法

    一. 问题: 如何实现在Oracle数据库中访问其他用户的表时不需加表所属的用户名 二. 举例: Oracle里面的用户A,要访问用户B的表需要带用户B的前缀,如访问用户B的 TEST表,需要这样访问 ...