[CC-BLREDSET]Black and Red vertices of Tree
[CC-BLREDSET]Black and Red vertices of Tree
题目大意:
有一棵\(n(\sum n\le10^6)\)个结点的树,每个结点有一种颜色(红色、黑色、白色)。删去一个由红色点构成的连通块,使得存在一个黑点和一个白点,满足这两个点不连通。问有多少种删法。
思路:
设满足删掉这个点后,使得存在一个黑点和一个白点,满足这两个点不连通的红点为关键点。那么我们可以用两个\(\mathcal O(n)\)的树形DP求出所有的关键点。剩下的问题就变成了求有多少种全红连通块使得该连通块中至少有一个关键点,这显然又可以用一个\(\mathcal O(n)\)树形DP求出。
源代码:
#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1,mod=1e9+7;
bool mark[N];
int col[N],cnt1[N],cnt2[N],f[N][2];
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
void dfs(const int &x,const int &par) {
cnt1[x]=cnt2[x]=0;
if(col[x]==1) cnt1[x]=1;
if(col[x]==2) cnt2[x]=1;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
dfs(y,x);
cnt1[x]+=cnt1[y];
cnt2[x]+=cnt2[y];
}
}
void move(const int &x,const int &par) {
bool g1=false,g2=false;
if(x!=1) {
g1=cnt1[par]-cnt1[x];
g2=cnt2[par]-cnt2[x];
cnt1[x]+=cnt1[par]-cnt1[x];
cnt2[x]+=cnt2[par]-cnt2[x];
}
mark[x]=false;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
mark[x]|=cnt1[y]&&g2;
mark[x]|=cnt2[y]&&g1;
g1|=cnt1[y];
g2|=cnt2[y];
move(y,x);
}
}
void dp(const int &x) {
col[x]=-1;
f[x][mark[x]]=1;
f[x][!mark[x]]=0;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(col[y]) continue;
dp(y);
f[x][1]=(1ll*f[x][1]*(f[y][0]+f[y][1]+1)%mod+1ll*f[x][0]*f[y][1]%mod)%mod;
f[x][0]=1ll*f[x][0]*(f[y][0]+1)%mod;
}
}
int main() {
for(register int T=getint();T;T--) {
const int n=getint();
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
for(register int i=1;i<=n;i++) {
col[i]=getint();
}
dfs(1,0);
move(1,0);
for(register int i=1;i<=n;i++) {
if(!col[i]) dp(i);
}
for(register int i=1;i<=n;i++) {
e[i].clear();
}
int ans=0;
for(register int i=1;i<=n;i++) {
if(col[i]==-1) (ans+=f[i][1])%=mod;
}
printf("%d\n",ans);
}
return 0;
}
[CC-BLREDSET]Black and Red vertices of Tree的更多相关文章
- BNUOJ 26229 Red/Blue Spanning Tree
Red/Blue Spanning Tree Time Limit: 2000ms Memory Limit: 131072KB This problem will be judged on HDU. ...
- CF375E Red and Black Tree(线性规划)
CF375E Red and Black Tree(线性规划) Luogu 题解时间 很明显有一个略显复杂的 $ n^3 $ dp,但不在今天讨论范围内. 考虑一些更简单的方法. 设有 $ m $ 个 ...
- [Codeforces375E]Red and Black Tree
Problem 给定一棵有边权的树.树上每个点是黑或白的.黑白点能两两交换. 求符合任意一个白点到最近黑点的距离小于等于x时,黑白点交换次数最少为多少. Solution 明显是一题树形DP.我们先跑 ...
- [CodeForces-375E]Red and Black Tree
题目大意: 给你一棵带边权的树,每个结点可能是红色或者黑色,你可以交换若干个点对使得任意一个红点到达与其最近的黑点的距离小于等于m. 思路: 动态规划. f[i][j][k]表示以i为根的子树中,连向 ...
- 「CF375E」Red and Black Tree「树形DP」
题意 给定一个结点颜色红或黑的树,问最少进行多少次交换黑.红结点使得每个红结点离最近的黑结点距离\(\leq x\). \(1\leq n \leq 500, 1 \leq x \leq 10^9\) ...
- 2018 ICPC青岛网络赛 B. Red Black Tree(倍增lca好题)
BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among ...
- ACM-ICPC2018 青岛赛区网络预赛-B- Red Black Tree
题目描述 BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. A ...
- 1443. Minimum Time to Collect All Apples in a Tree
Given an undirected tree consisting of n vertices numbered from 0 to n-1, which has some apples in t ...
- easyui 键盘控制tree 上下
$.extend($.fn.tree.methods, { highlight: function(jq, target){ return jq.each(function(){ $(this).fi ...
随机推荐
- java web 项目中 简单定时器实现 Timer
java web 项目中 简单定时器实现 Timer 标签: Java定时器 2016-01-14 17:28 7070人阅读 评论(0) 收藏 举报 分类: JAVA(24) 版权声明:本文为博 ...
- meaven
一个项目管理工具.java语言编写的,所以可以跨平台 https://mvnrepository.com/
- OpenCV-Python教程8-图像混合
一.图片相加 要叠加两张图片,使用cv2.add(),相加两幅图片的形状(高度.宽度.通道数)必须相同.numpy中可以直接用res = img1 + img2相加.但是两者的结果并不相同 impor ...
- tensorflow实现RNN及Word2Vec
参考:<tensorflow实战> 首先介绍一下Word2Vec Word2Vec:从原始语料中学习字词空间向量的预测模型.主要分为CBOW(Continue Bags of Words) ...
- SQLServer索引及统计信息
索引除了提高性能,还能维护数据库. 索引是一种存储结构,主要以B-Tree形式存储信息. B-Tree的定义: 1.每个节点最多只有m个节点(m>=2) 2.除了根节点和叶子节点外的每个节点上最 ...
- WPF 对控件进行截图且不丢失范围(转载)
原文:Taking WPF “Screenshots” I was recently working on a Surface project at Microsoft (that will be s ...
- WPF在XAML中实现持续动画的暂停、恢复、停止
1.动画通过EventTrigger监听按钮的FrameworkElement.Loaded事件,但控件载入时就进行动画, 持续动画通过<BeginStoryboard Name="y ...
- Python_os模块
os模块:可以处理文件和目录,是Python系统和操作系统进行交互的一个接口 os模块常用方法: os.getcwd(): 获取当前工作目录,(即当前Python脚本工作的目录路径) os.chdir ...
- Codeforces 837F Prefix Sums
Prefix Sums 在 n >= 4时候直接暴力. n <= 4的时候二分加矩阵快速幂去check #include<bits/stdc++.h> #define LL l ...
- Spring日记_02之 json、javaBean、.do、MySql、MyBatis 环境搭建结束
JSON Json是JavaScript直接量语法 无参构造方法直接 Alt + \ 就可以提示添加 Project – Clean 浏览器向服务器发送请求,服务器中的Spring中的SpringMV ...